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Abstract

We study the computational complexity of finding a competitive equilibrium (CE) with
chores when agents have linear preferences. CE is one of the most preferred mechanisms for al-
locating a set of items among agents. CE with equal incomes (CEEI), Fisher, and Arrow-Debreu
(exchange) are the fundamental economic models to study allocation problems, where CEEI is
a special case of Fisher and Fisher is a special case of exchange. When the items are goods (giv-
ing utility), the CE set is convex even in the exchange model, facilitating several combinatorial
polynomial-time algorithms (starting with the seminal work of Devanur, Papadimitriou, Saberi
and Vazirani [DPSV08]) for all of these models. In sharp contrast, when the items are chores
(giving disutility), the CE set is known to be non-convex and disconnected even in the CEEI
model. Further, no combinatorial algorithms or hardness results are known for these models.

In this paper, we give two main results for CE with chores:

• A combinatorial algorithm to compute a (1− ε)-approximate CEEI in time Õ(n4m2/ε2),
where n is the number of agents and m is the number of chores.

• PPAD-hardness of finding a (1−1/poly(n))-approximate CE in the exchange model under
a sufficient condition.

To the best of our knowledge, these results show the first separation between the CEEI and
exchange models when agents have linear preferences, assuming PPAD 6= P. Furthermore, this
is also the first separation between the two economic models when the CE set is non-convex in
both cases.

Finally, we show that our new insight implies a straightforward proof of the existence of
an allocation that is both envy-free up to one chore (EF1) and Pareto optimal (PO) in the
discrete setting when agents have factored bivalued preferences. This result is recently obtained
in [GMQ22, EPS22] using an involved analysis.

1 Introduction

Competitive equilibrium (CE) theory has been one of the most fundamental concepts in mathemat-
ical economics for more than a century. Problems in this domain, study the pricing and allocation
of resources to agents based on the interaction of demand and supply.
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The existence and computation of CE has been extensively studied in several economic models.
The two most fundamental economic models are the Arrow-Debreu (exchange) model and the Fisher
model. The exchange model is like a barter system, where each agent comes with some initial
endowment of items and exchanges them with other agents to maximize their utility. The goal is
to determine the prices for the items such that (i) each agent gets her most preferred affordable1

bundle of items and (ii) all items are completely allocated. The Fisher model is a special case of the
exchange model where every agent owns a fixed amount of each good. This has been shown to be
equivalent to the setting where each agent is endowed with some fixed amount of money (instead
of items). A prominent special case of the Fisher model, which is also of high interest to the fair
division community, is Competitive Equilibrium with Equal Income (CEEI), where each agent is
endowed with equal amount of money.

The items to be divided can be either goods (giving utility) or chores (giving disutility). We
assume that agents have linear utility functions, which are also very commonly used in applica-
tions.2

CE with goods. CE with goods has been well-studied in all models since the 1950s: Earlier work
settled the existence of equilibrium [Gal76] and derived various convex programming and linear com-
plementarity problem (LCP) formulations that capture the set of CE [EG59, NP83, Cor89, Eav76].
As a result, there have been continuous optimization based algorithms (interior point [Jai07], ellip-
soid [Ye08]) for determining CE. Later on, faster algorithms have been obtained using combinatorial
methods [DPSV08, Orl10, DM15, DGM16, GV19]. In contrast to most continuous optimization
based methods, the combinatorial algorithms simulate intuitive dynamics: they start with arbitrary
prices of the goods and gradually adjust them according to demand and supply. The challenge lies
in showing fast (polynomial time) convergence. Moreover, most of the combinatorial algorithms
are flow-based algorithms and therefore provide more room for faster algorithms, given the deep
understanding of flow based subroutines since the last four decades. Indeed, the fastest weakly poly-
nomial time and strongly polynomial time algorithms for finding CE in all models are combinatorial
algorithms [Orl10, DGM16, CM18, GV19].

CE with chores. CE with chores turns out to be significantly more challenging. In contrast
to the case with goods, where the CE set is convex even in the (most general) exchange model,
the set of CE with chores can be non-convex containing many disconnected sets in the CEEI
model [BMSY17]. This “disconnectedness” may bring up several computational bottlenecks. In
fact, [BMSY17] mention: “we expect computational difficulties in problems with many agents
and/or items.” However, quite recently, [BCM22] presents a Õ(n6m3/ε2) time3 exterior point
algorithm for determining an (1− ε)-approximate CE with chores in the CEEI model where n and
m denote the number of agents and chores, respectively. We remark that there are instances where
the set of (1− ε)-approximate CE with chores in the CEEI model are also disconnected. However,
the algorithm in [BCM22] does not provide any insights into the dynamics of pricing and allocation
under the influence of demand and supply. Therefore, a natural question that arises is whether
there are combinatorial algorithms (which are also hopefully faster) to find an approximate CE with

1Affordable in exchange of her initial endowment of items.
2Utility from a bundle x = 〈x1, x2, . . . , xm〉 of items is defined as: u(x) =

∑
j ujxj , where uj is the utility from

one unit of item j. Spliddit (www.spliddit.org) is a user friendly online platform for computing fair allocation in a
variety of problems, which has drawn tens of thousands of visitors in the last few years [GP14]. Spliddit uses additive
preferences which are the parallel to linear utilities in the context of dividing indivisible goods.

3Õ(·) hides poly-logarithmic factors. The algorithm in [BCM22] runs in O(n3/ε2) iterations (Lemma 13) and each
iteration solves a convex quadratic program in nm variables, which takes Õ(n3m3) time [GL91].
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chores. Unfortunately, the combinatorial algorithms for CE with goods and their corresponding
convergence analysis do not generalize to the chores setting as all of them exhibit the fundamental
bottleneck of non-monotone surpluses (elaborated in Section 2).

This brings us to the first main contribution of the paper. We overcome the barrier of non-
monotone surpluses and give the first combinatorial algorithm for determining a (1−ε)-approximate
CE with chores in the CEEI model. Our algorithm is significantly faster than the algorithm
in [BCM22] (by a factor of Ω̃(n2m)). Furthermore, when the disutility values are α-rounded, i.e.,
the disutility incurred by any agent from consuming one unit of any chore is a power of (1+α) for an
α > 0, we can compute an exact CE in Õ(n2m2/α2) time. We remark that algorithm in [BCM22]
does not obtain an exact CE for rounded disutilities in polynomial time!

Theorem 1. There exist combinatorial algorithms that

• compute a (1− ε)-approximate CEEI with chores in time Õ(n4m2/ε2), and

• compute an exact CEEI with chores in time Õ(n2m2/α2) when the disutility values are α-
rounded.

We mention some additional insights that our algorithm provides. Firstly, the convergence
analysis of our combinatorial algorithm also works for the setting with goods, which gives a new
form of convergence analysis in that case as well. Secondly, our algorithm also shows that finding
an exact CE in the Fisher model is in PLS. Since [CGMM21] shows that this problem is in PPAD,
which implies that the problem lies at PPAD ∩ PLS = CLS [FGHS21].

We now address the computational complexity of finding a CE in the exchange model. Similar
to the case with goods [Gal76], a CE may not always exist in the exchange model for arbitrary
instances. [CGMM22] gives a polynomial-time verifiable sufficient condition4 under which a CE is
guaranteed to exist. In our second main result, we show that given an instance that satisfies the
sufficient condition, determining an approximate-CE in the exchange model is PPAD-hard.

Theorem 2. Finding a (1−1/poly(n))-approximate CE in the exchange model under the sufficient
conditions is PPAD-hard.

Theorems 1 and 2 show the first separation between the CEEI model and the exchange model
when agents have linear preferences, assuming PPAD 6=P. To the best of our knowledge, these results
also give the first separation between the two economic models where the CE set is non-convex in
both cases! 5

Organization of the rest of the paper. Section 2 defines the problem with all studied models.
Sections 2.1 and 2.3 present a sketch of main techniques and ideas used in designing combinatorial
algorithm and showing PPAD-hardness, respectively. Section 2.2 presents a sketch of how our
new insight implies the existence of an allocation that is both envy-free up to one chore (EF1)
and Pareto optimal (PO) in the discrete setting under bivalued preferences. Section 3 presents
applications and further related work. Appendices 4 and 5 contain the full details of our two main
results.

4The sufficient condition is automatically satisfied by the Fisher model.
5Such a separation is also known for constant elasticity of substitution (CES) and Leontief preferences, where

equilibrium computation in the CEEI model is in P using convex formulation [Eis61], and it is PPAD-hard in the
exchange model [CSVY06, CPY17, GMVY17]. However, the set of CE is convex in the CEEI model and non-convex
in the exchange model.
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2 Model and Technical Overview

A chore division problem consists of a set [m] of divisible chores (bads), and a set [n] of agents,
where by [a] we mean set {1, . . . , a}. We assume that each agent i has a disutility of dij ∈ (0,∞]
for one unit of chore j.6 dij = ∞ implies that chore j cannot be allocated to agent i as she may
not have the required skills. If agent i is assigned a bundle xi = 〈xi1, xi2, . . . , xim〉, then her total
disutility Di(xi) =

∑
j∈[m] dijxij . We first define CE in the exchange model as it is the more general

of the two models under consideration in this paper.

Exchange model. In the exchange model, each agent i brings wij units of chore j to be done (by
herself or other agents). Given prices p = 〈p1, p2, . . . , pm〉 ∈ Rm≥0 for chores, where pj denotes the
payment for doing unit amount of chore j, agent i needs to earn

∑
j∈[m]wijpj in order to pay to get

her own chores done. Clearly, i would like to choose a feasible bundle that minimizes her disutility
– this defines her optimal bundle (or optimal chore set).

OB i(p) = argminxi∈Rm
≥0:〈xi,p〉≥〈wi,p〉 Di(xi). (1)

Due to linearity of the disutility functions, in an optimal bundle, each agent i is assigned only
those chores that minimize her disutility per dollar earned and agent i earns money exactly equal
to the total price of her endowments. Let MPB i denote the minimum pain per buck of agent i at
prices p, i.e., MPB i = minj∈[m]dij/pj . Formally, if xi ∈ OB i(p), then,

∀j ∈ [m], xij > 0 ⇒ dij
pj

= MPB i, and
∑
j∈[m]

xij · pj =
∑
j∈[m]

wij · pj .

In the above ratios, to deal with zero prices and infinite disutilities we assume that ∞/a > b/0
for any a, b ≥ 0. Clearly, an optimal bundle of an agent contains only those chores for which
she has finite disutility. The price vector p is said to be at a CE if all chores are completely
assigned when every agent gets one of her optimal bundles, i.e., xi ∈ OB i(p) ∀i ∈ [n], and∑

i∈[n] xij =
∑

i∈[n]wij , ∀j ∈ [m]. It is without loss of generality to assume that each chore is
available in one unit total, i.e.

∑
i∈[n]wij = 1 (through appropriate scaling of the disutility values).

At approximate competitive equilibrium, we require that agents approximately earn enough to
pay for their chores. Next we define (1− ε)-approximate CE (as in [BCM22]), where setting ε = 0
gives the exact CE. Now on, by x = (1± ε)y we mean (1− ε)y ≤ x ≤ (1 + ε)y.

Definition 3. [BCM22] We say that price vector p = 〈p1, p2, . . . , pm〉 ∈ Rm≥0 and allocation x =
〈x1, x2, . . . , xn〉 are at (1− ε)-approximate competitive equilibrium (CE), if

1. Complete allocation. For each item/chore j ∈ [m],
∑

i∈[n] xij = 1(=
∑

i∈[n]wij).

2. Consume best chores. For each agent i ∈ [n], xij > 0⇒ dij
pj

= MPB i.

3. Approximate earning. For each agent i ∈ [n],
∑

j∈[m] xijpj = (1± ε) ·
∑

j∈[m]wijpj.

In general, a CE may not always exist in the exchange model (with goods or bads) [CGMM22].
In the setting with goods, there exists a polynomial time verifiable necessary and sufficient con-
dition, under which an instance will always admit a CE. However, in the setting with chores,
determining whether an arbitrary instance admits a CE is NP-complete [CGMM22], even in the
CEEI model. This rules out the possibility of obtaining a polynomial time verifiable necessary and

6If dij = 0, we can simply assign chore j entirely to agent i and remove it from the instance.
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sufficient condition unless P = NP. Therefore, the best one can hope for is a polynomial time ver-
ifiable sufficient condition that captures interesting instances. Chaudhury et al. [CGMM22] show
such a sufficient condition. We now elaborate their sufficient condition. To this end, we first define
the economy graph and the disutility graph of an instance I. The economy graph E(I) is a directed
graph with vertices corresponding to the agents [n] and there is an edge from i to i′ in E(I) if there
exists a chore j such that wij > 0 and di′j 6=∞. The disutility graph G(I) is a bipartite graph with
the set of agents [n] and the set of chores [m] as the two parts and there is an edge from i ∈ [n] to
j ∈ [m] if dij 6=∞. [CGMM22] show the following theorem.

Theorem 4. An instance I of chore division in the exchange model, admits a CE, if it satisfies
the following two conditions:

SC1. E(I) is strongly connected, and

SC2. G(I) is a disjoint union of complete bipartite-graphs (bicliques).

CEEI model. The CEEI model is a special case of the exchange model, where instead of the
initial endowment of chores, all the agents have a fixed and the same earning requirement, say of
one unit (dollar). In particular, the only change is in the definition of the feasible set of chores
that can be allocated to an agent at prices p, namely {xi ∈ Rm≥0 |

∑
j∈[m] xijpj ≥ 1}. Under

this feasibility set, OB i(p) is well-defined. Accordingly, in the Definition 3 of (1− ε)-approximate
competitive equilibrium, the only change is in the last condition,

Approximate earning. For each agent i ∈ [n],
∑
j∈[m]

xijpj = (1± ε)

To understand why CEEI is a special case of exchange model, note that we can convert an
instance of CEEI to an instance of exchange by setting all wij = 1/n for each i ∈ [n] and j ∈ [m]
and keeping the disutility values as is. Since the CE prices are scale invariant in the exchange
model, wlog we can assume that they sum to n. This translates to earning requirement of 1 for
each agent under this reduction.

Recall that determining whether an arbitrary instance of the CEEI model admits a CE is NP-
complete [CGMM22]. It is straightforward to see that if we model an instance in the CEEI model
as an instance in the exchange model, then the economy graph E(I) is a clique and thus strongly
connected. Therefore, the only sufficient condition that the instance needs to satisfy to admit a
CE is that the disutility graph is a disjoint union of bicliques.

Corollary 5. An instance I of chore division in the CEEI model, admits a CE, if G(I) is a disjoint
union of bicliques.

Note that Corollary 5 contains all instances where all disutility values are finite. Furthermore,
given any arbitrary instance I that satisfies the condition in Corollary 5, we can decompose the in-
stances into sub-instances, where each sub-instance contains the agents and chores in a component
in the disutility graph and solve each sub-instance separately. Thus, if there exists any polyno-
mial time (approximation) algorithm for instances where all disutility values are finite, we get a
polynomial time (approximation) algorithm for all instances that satisfy the sufficient condition in
Corollary 5. Next, for each of our two main results, we elaborate the fundamental roadblocks and
the main technical ideas to overcome them.
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2.1 Combinatorial Algorithm for the CEEI Model

In this section, we highlight the issue of non-monotone surpluses that arises when we try to gener-
alize combinatorial algorithms from the setting with goods to the setting with chores. Thereafter,
we discuss a possible fix which will give us the crucial ideas needed for our combinatorial algorithm.

Combinatorial algorithms for goods. For the case of goods, think of dij as the utility (hap-
piness) agent i gets per unit of good (item) j, and has $1 of budget to spend. Clearly, at CE the
agents would want to consume only the goods that give maximum utility per dollar spent, a.k.a.
Max-Bang-Per-Buck (MBB). Based on this, in most of the known combinatorial algorithms, finding
a CE is formulated as a flow problem as follows: Given prices of goods p = 〈p1, p2, . . . , pm〉 such
that

∑
j∈[m] pj = n = total-budget, construct an MBB network Np = {{s} ∪ [n] ∪ [m] ∪ {t}, E}. It

is a flow network comprising of a source vertex s, the set of agents [n], the set of goods [m] and a
sink t. For each agent i, let MBB i = max j∈[m]dij/pj . The edge set E of Np comprises of

• edge (s, i) from the source s to agent i of capacity 1 (budget), for all i ∈ [n],

• edge (i, j) with ∞ capacity, ∀i ∈ [n],∀j ∈ [m], where dij/pj = MBB i, and

• edge (j, t) from good j to sink t of capacity pj , for all j ∈ [m].

Observe that, determining a CE reduces to finding a set of prices p such that the maximum flow
in Np is

∑
j∈[m] pj = n: Let f be a max-flow. Set the allocation x as xij = fij/pj for all i ∈ [n] and

j ∈ [m]. Note that f saturates all the edges from [m] to t implying complete allocation. Each agent
i is only allocated her MBB goods at prices p, and since f saturates (s, i) for all i, each agent i
sends all of her budget, in turn implying that she gets her optimal bundle. These conditions imply
a CE (see Definition 3 with ε = 0).

Given any flow f in Np, let surplus rf (i) of an agent i be the residual capacity remaining on
the edge (s, i), i.e., rf (i) = 1 − fsi = 1 −

∑
j∈[m] fij . If the prices are at a CE, the surplus of all

agents will be zero. At a high-level, all combinatorial algorithms start with arbitrary prices and
allocation and then adjust the prices and allocation such that the `2-norm of the surpluses of the
agents decreases. Faster algorithms are obtained by achieving faster convergence rates with more
sophisticated adjustment rules. We briefly sketch the intuitive price and flow adjustment:

Flow adjustment: During this phase, we make no changes to the prices. At a given price vector p,
the flow is set to the one that minimizes the `2-norm of the surpluses of the agents.

Price adjustment: During this phase, we make no changes in the allocation. The price adjustment
is done in a very intuitive way: increase the prices of the goods in-demand and decrease the prices
of the rest. That is, let S be the set of agents with highest surplus, then the goods adjacent to
them, say Γ(S) in the MBB graph, are completely sold, as otherwise one can reduce surpluses of
some of the agents in S and thereby reduce the `2-norm. Thus, the goods in Γ(S) are in-demand
as the demand exceeds supply for these goods.

We increase the prices of the goods in Γ(S) and decrease the prices of the goods outside Γ(S)
continuously such that the sum of prices of the goods equals the sum of budgets of the agents, i.e.,
we scale the prices of goods in Γ(S) by x > 1 and the prices of the goods in [m] \ Γ(S) by y < 1
such that x ·

∑
j∈Γ(S) pj + y ·

∑
j∈[m]\Γ(S) pj = n. See Figure 1 for an illustration. Note that, during

this price change a feasible flow can be easily maintained by scaling the edge-flows appropriately.
Note that the allocation still remains the same as fij/pj remains the same.

p′j =

{
xpj j ∈ Γ(S)

ypj j /∈ Γ(S)
(2)
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f ′ij =

{
xfij , if j ∈ Γ(S)

yfij , if j /∈ Γ(S)
f ′jt =

{
xfjt, if j ∈ Γ(S)

yfjt, if j /∈ Γ(S)
f ′si =

{
xfsi, if i ∈ S
yfsi, if i /∈ S

(3)

Note that, in this process the surplus of agents in S is decreasing. We keep updating the prices
continuously until either a new MBB edge appears in the MBB graph (from some agent in S to
a good outside Γ(S)) or the surplus of one of the agents in S becomes equal to the surplus of an
agent outside S.
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6
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Price adjustment

Figure 1: Illustration of the price adjustment phase. The MBB flow network Np before the price adjustment
phase is shown on the left. The numbers below the edges from s to [n] and [m] to t are the capacities of
the edges (earning limit and prices respectively). The numbers on top of the agents show their respective
surpluses w.r.t. a flow in Np that minimizes the `2-norm of the surpluses. The set S = {b1, b2, b3} and
Γ(S) = {g2, g3, g4}. The price adjustment phase increases the prices of the goods in Γ(S) and the inflow to
Γ(S) until either a new MBB edge appears in Np or one of the surpluses of an agent in S equals that of
some agent outside S. The figure on the right shows the MBB network after the price adjustment phase –
a new MBB edge from b3 to g5 appears and the `1-norm of the surpluses decreases.

Correctness. We need to first argue that f ′ is a valid-flow in Np′ . Note that if f ′ augments flow
on valid edges in Np′ , it is easy to see that it satisfies flow conservation and capacity constraints.
So we focus only on showing that f ′ij > 0 if and only if (i, j) ∈ Np′ . Note that, since flow on edges
are scaled multiplicatively, f ′ij > 0 if and only if fij > 0. Therefore, it suffices to prove that no
edge with positive flow under f can disappear during the price update. Since the prices of goods in
Γ(S) are increased by factor x and those in [m] \ Γ(S) are decreased by factor y, only the edges to
Γ(S) can disappear. However, all agents in S have MBB edges only to goods in Γ(S) and since the
price of all these goods increases by the same factor, none of the edges from S to Γ(S) disappear.
The only edges that may disappear are the ones from agents outside S to goods in Γ(S). We next
argue that these edges must have zero flow.

To this end, note that f was the flow that minimized the `2-norm of the surpluses of the agents
in Np. Suppose i′ /∈ S has a positive flow to some good j ∈ Γ(S), i.e., fi′j ≥ ε > 0. Since j ∈ Γ(S),
there must be an i ∈ S with an MBB edge to j. Since S is the set of agents with highest surplus,

7



we can conclude that rf (i) > rf (i′). Then, we can push more flow from i to j and push back the
same amount of flow from j to i′ continuously. Note that in this process the `1-norm of the surplus
remains the same while the `2-norm decreases (as two surpluses rf (i) and rf (i′) are moving closer
to each other), which is a contradiction. Thus fi′j = 0.

Now, we are ready to argue why the above procedure should converge. The price and flow update
influences the surpluses of the agents. We show that the `1-norm of the surplus monotonically
decreases. Note that, after a price adjustment phase,

∑
i∈[n]

rf ′(i) =
∑
i∈[n]

(1−
∑
j∈[m]

f ′ij) =
∑
j∈[m]

(p′j −
∑
i∈[n]

f ′ij) (
∑
j∈[m]

p′j = n)

=
∑

j∈Γ(S)

(p′j −
∑
i∈[n]

f ′ij) +
∑

j /∈Γ(S)

(p′j −
∑
i∈[n]

f ′ij) = x
∑

j∈Γ(S)

(pj −
∑
i∈[n]

fij) + y
∑

j /∈Γ(S)

(pj −
∑
i∈[n]

fij)

= y
∑

j /∈Γ(S)

(pj −
∑
i∈[n]

fij) (goods in Γ(S) are fully sold)

<
∑
j∈[m]

(pj −
∑
i∈[n]

fij) =
∑
i∈[n]

(1−
∑
j∈[m]

fij) =
∑
i∈[n]

rf (i). (y < 1,
∑
j∈[m]

pj = n)

Furthermore, every flow that minimizes the `2-norm of the surpluses is also a maximum flow [DPSV08].
Thus, after the flow update phase, the `1-norm of the surpluses does not increase, implying that
after each iteration the `1-norm of the surpluses of the agents decreases. To get faster convergence,
many algorithms show that the `2-norm of the surpluses decreases significantly. Intuitively it is
equivalent to arguing that surpluses of the agents are getting more balanced, and this is straight-
forward to see. Observe that

• the `1-norm decreases,

• the surplus of the agents in S (the high surplus agents) decreases, and

• the surplus of the agents in [n] \ S (the low surplus agents) increases.

A proper analysis can show that the `2-norm decreases as well. The decrease in the `2-norm is used
to prove polynomial convergence in the exchange model too [DM15, DGM16, CM18].

Non-monotone surpluses for CE with chores. We now elaborate the fundamental problem
in generalizing the overall structure of the above approach to the setting with chores.

At CE, since every agent consumes only her Min-Pain-per-Buck (MPB) chores, we can define
the MPB-network analogously to the MBB-network for goods. That is, network Np at prices p

where only difference is that edge (i, j) is present if
dij
pj

= mink
dik
pk

= MPB i. Like earlier, then

the goal is to find a set of prices p at which the maximum flow in Np is n =
∑

j∈[m] pj . Given a
flow f in Np, we define the surplus of an agent rf (i) = 1− fsi = 1−

∑
j∈[m] fij . Now, we wish to

come up with an allocation and price adjustment rules that help decrease the `1 or `2-norm of the
surpluses. At a fixed price, we always set the allocation to the one that minimizes the `2-norm of
the surpluses. Now, we show the crucial problem during a price adjustment phase. Let S be the
set of agents with highest surplus and Γ(S) be the set of chores that are their neighbors in Np.
Note that, in case of chores, agents prefer higher prices since they fetch better earning.

• Increasing prices of chores in Γ(S) and decreasing prices of chores outside Γ(S):
Increasing prices of chores Γ(S) (in-demand chores) is counter-intuitive, since it will further
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increase their demand. Formally, after the flow-adjustment step, each agent i /∈ S has flow
only to the chores outside of Γ(S), but may have an MPB edge to a j ∈ Γ(S). Now if prices
of chores in Γ(S) are increased, and of those outside Γ(S) are decreased, then i would strictly
prefer j over any chore outside of Γ(S). Hence all of her flow-carrying edges will disappear,
and to maintain a valid flow we will have to reduce flow on (s, i) edge accordingly which will
significantly increase the surplus of agent i and the total surplus.

• Decreasing prices of chores in Γ(S) and increasing prices of chores outside Γ(S):
While this definitely seems more intuitive, the `1 and the `2-norm of the surpluses can still
increase. So we update the prices and flows as in equations (2) to (3) with x < 1 and y > 1
this time. Then using the same derivation as in the goods case and the fact that y > 1 we get
that

∑
i∈[n] rf ′(i) >

∑
i∈[n] rf (i). That is, the `1-norm of the surpluses increases (diverges).

A possible workaround for the second bullet above is to allow negative surpluses (or equivalently
relaxing the capacity constraints on the flow on the edges from s to [n]). This will always ensure
that f will saturate all edges from t to [m] or equivalently f has total flow-value of

∑
j∈[m] pj .

This way, we have sum of the surpluses is always zero. However, our goal now becomes to get the
`2-norm of the surpluses to be zero (as this will ensure that each agent i earns exactly 1 through her
MPB chores). But observe that the `2-norm may increase: Since we are decreasing the outflow from
agents in S (who are the high-surplus agents), the surplus of each agent in S increases. Similarly,
since we are increasing the outflow from each agent outside S (the low surplus agents), the surplus
of the agents outside S decreases. As such, the gap between the high surplus and the low surplus
increases, and in turn the `2-norm increases. In fact, this is the main bottleneck in using any
potential that “balances” the surpluses.

Overcoming non-monotone surpluses: Nash-welfare. We show how to overcome the prob-
lem of non-monotone surpluses. Decreasing prices of the high-demand chores and increasing that
of the low-demand chores is a natural price adjustment scheme. Our solution lies in identifying the
correct convergence analysis.

Recall that when we decrease the prices of the high-demand chores and increase the price of the
low demand chores, the `2-norm of the surplus increases as this process increases the gap between
the surpluses of the agents in S and the ones outside S while keeping sum of surpluses the same.
However, such a price adjustment can also bring new MPB edges (say (i, j)) in the graph from
agents in S to chores outside of Γ(S). Let i′ be an agent outside S that has positive outflow to j.
Note that at this point we can definitely balance the surplus by pushing some flow from i to j and
pushing back some flow from j to i′. What is unclear is whether we can balance the flow sufficient
enough to compensate for the increase in `2-norm prior to the appearance of the MPB edge! This
observation leads us to our new potential function.

We want a potential function which does not change during the price adjustment, but improves
during the allocation update with the help of the new MPB edge.

We define our potential function as the product of the disutilities:
∏
i∈[n]Di(xi). Crucially

observe that the allocation xij = fij/pj does not change during the price adjustment as fij and pj
are scaled by the same scalar. Therefore, our potential does not change during price update. We
now make subtle changes in the price and the allocation adjustment process and then argue about
the convergence of our algorithm.

Given a set of prices p, let Np be the MPB flow network. We make a subtle change in the
capacities of the edges. We make the capacity of all edges from s to [n] infinite, implying that
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any max-flow will push a total flow of
∑

j∈[m] pj saturating all edges from [m] to t. Given a flow
f in Np, let outflowf (i) denote the total outflow from agent i, i.e., outflowf (i) =

∑
j∈[m] fij . Our

goal now is to determine prices p and a max flow such that outflowf (i) = 1 for all i ∈ [n] and∑
j∈[m] pj = n. Note that we can write Di(xi) = MPB i · outflowf (i). Therefore, we can re-write

our potential
∏
i∈[n]Di(xi) =

∏
i∈[n](MPB i · outflowf (i)) =

∏
i∈[n] MPB i ·

∏
i∈[n] outflowf (i).

Let S be the set of agents with smallest value of outflowf (i) and let Γ(S) be the set of chores
adjacent to S in Np. We adjust the allocation and prices as follows,

Flow adjustment. We do not change prices and set flow to the one that maximizes
∏
i∈[n] outflowf (i).

Price adjustment. We decrease the prices of the chores in Γ(S) by factor of x < 1 until a new MPB
edge appears from some agent in S to a chore outside of Γ(S). And we keep a valid flow.

p′j =

{
xpj j ∈ Γ(S)

pj j /∈ Γ(S)
(4)

f ′ij =

{
xfij j ∈ Γ(S)

fij j /∈ Γ(S)
f ′jt =

{
xfjt j ∈ Γ(S)

fjt j /∈ Γ(S)
f ′si =

{
xfsi i ∈ S
fsi i /∈ S

(5)

Correctness. Crucially, we can still argue that f ′ is a valid flow in Np′ like earlier.7 To show
convergence, we show that our potential improves after every price and flow adjustment. First note
that the potential does not change during the price adjustment: Let x and x′ be the allocations
corresponding to the flows f and f ′ respectively. Note that xij = fij/pj and x′ij = f ′ij/p

′
j for all

i ∈ [n], j ∈ [m]. From equations (4) and (5), we have f ′ij/p
′
j = fij/pj for all i ∈ [n], j ∈ [m],

implying that x = x′. Therefore Di(x
′
i) = Di(xi) and the potential does not change during price

adjustment.
Now we show that the potential improves during flow adjustment. Note that, since our potential

is
∏
i∈[n] MPB i ·

∏
i∈[n] outflowf ′(i), where

∏
i∈[n] MPB i does not change during the flow adjustment,

it suffices to show that there is a flow f ′′ in Np′ such that
∏
i∈[n] outflowf ′′(i) >

∏
i∈[n] outflowf ′(i).

Let (i, j) with i ∈ S and j /∈ Γ(S) be the new MPB edge that appears in Np′ when we up-
date the flow from f to f ′. Let i′ /∈ S be an agent that had positive outflow to j. Note that
outflowf (i) < outflowf (i′) and the flow and price adjustments outlined in equations (4) and (5)
show that the outflow of agent i decreases and that of i′ remains the same. This implies that
outflowf ′(i) < outflowf (i) < outflowf (i′) = outflowf ′(i

′). Also, f ′i′j > 0 as fi′j > 0. Let
f ′′ be the flow obtained from f ′ by pushing more flow from i to j and pushing back the same
amount of flow from j to i′, while still maintaining outflowf ′′(i) ≤ outflowf ′′(i

′). Note that
outflowf ′(i) < outflowf ′′(i) ≤ outflowf ′′(i

′) < outflowf ′(i
′) and outflowf ′′(i) + outflowf ′′(i

′) =
outflowf ′(i) + outflowf ′(i

′). Therefore, we have
∏
i∈[n] outflowf ′′(i) >

∏
i∈[n] outflowf ′(i) (as the

outflows are getting more balanced).

7The most crucial argument is to show that all positive flow carrying edges do not disappear during the price
adjustment, i.e., all (i, j) such that fij > 0 are present in Np′ (equations of (5) would then automatically imply
that f ′ij > 0 only if (i, j) ∈ Np′). Since we only decrease the prices of the chores in Γ(S), the only edges that can
disappear are the ones that are incoming to Γ(S) from agents outside S. Post flow-adjustment step, these edges will
carry zero flow. Otherwise we have a chore j ∈ Γ(S), an agent i ∈ S and an agent i′ /∈ S such that fij > ε > 0 and
fi′j > ε > 0. Note that we can push more flow from i to j and push back some flow from j to i′ such that outflowf (i)
and outflowf (i′) move closer to each other while keeping the sum of outflows the same, i.e.,

∑
i∈[n] outflowf (i) remains

same. This improves
∏

i∈[n] outflowf (i), which is a contradiction. Thereafter, it is straightforward to see that the f ′

satisfies flow conservation and capacity constraints in Np′ .
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We refer the reader to Section 4 for a more detailed and rigorous explanation of the combinatorial
algorithm. The remaining bulk of the effort is put into proving fast (polynomial time) convergence
when either (i) the disutility values are α-rounded or (ii) we are only aiming for (1 − ε)-CEEI.
Lastly, note that our algorithm moves from a Nash welfare maximizing allocation at a particular
MPB configuration to a Nash welfare maximizing allocation at another MPB configuration. In this
process, it also strictly improves the Nash welfare. This shows that finding a CEEI (exactly) is in
PLS. Since [CGMM21] show that this problem is in PPAD, we can conclude that this problem lies
in PPAD ∩ PLS = CLS.

2.2 Discrete Setting with Bivalued Preferences

In the discrete chore division problem, a set of indivisible chores needs to be divided among agents
in a fair and efficient manner. In this setting, envy-freeness up to one chore (EF1) and Pareto
optimality (PO) are popular fairness and efficiency notions, respectively.

EF1 and PO. An allocation x is said to be EF1 if for every pair of agents (i, i′), there exists a
chore c(i, i′) ∈ xi such that Di(xi \ c(i, i′)) ≤ Di(xi′), i.e., the disutility of agent i from xi after the
removal of a chore c(i, i′) is at most the disutility of i for xi′ .

8

An allocation x is said to Pareto dominates another allocation x′ if Di(xi) ≤ Di(x
′
i),∀i with a

strict inequality for at least one agent. We say that x is PO if no other allocation x′ dominates it.

A major open question in the discrete setting is whether there always exists an allocation that
is both EF1 and PO. Very recently, [GMQ22, EPS22] answered this question affirmatively when
agents have bivalued preferences, i.e., dij ∈ {1, β}, for some β > 1. However, their analysis is
quite involved, especially due to lack of a potential function for the convergence. Next, we briefly
sketch how our new insight on the potential function of the product of disutility values implies a
straightforward argument for the convergence.

First, we briefly sketch the approaches of [GMQ22, EPS22]. They both utilize the notions of
integral competitive equilibrium (CE) and price envy-freeness up to one chore (pEF1) [BKV18].
Since pEF1 implies both EF1 and PO, we only need to find an allocation that is pEF1. For
that, they start with a trivial CE (x, p) and achieve pEF1 by directly transferring chores (on
MPB edges) from a big earner to a least earner.9 The main challenge in both the papers is to
show that this process converges. Let p(xi) =

∑
j∈xi pj is the total payment of doing chores in

xi. Big earner, say b, is an agent who earns the maximum after the removal of a chore, i.e.,
b = arg maxi minc∈xi p(xi \ c). Similarly, least earner, say l, is an agent who earns the least, i.e.,
l = arg mini p(xi). If p(xb)− pc ≤ p(xl), where c is a chore in xb, then x is a pEF1 allocation.

Using our new insight on the potential function of the product of disutilities, we next show
that it strictly increases in the above setting as well, thereby giving a straightforward proof of the
convergence. Since any form of price-update doesn’t change the potential function (because the
allocation remains the same), we only need to show that it strictly increases during an allocation
update. Further, the above discussion implies that we only need to show that if p(xb) − pc >
p(xl) then transferring c from b to l results in an increased potential function. Let x′ be the
new allocation where x′b = xb \ c and x′l = xl ∪ c. Recall from Section 2.1 that we can write
Di(xi) =

∏
iMPBi ·

∏
i p(xi). Since MPBi’s doesn’t change during allocation change, we need to

show that ∏
i

p(xi) <
∏
i

p(x′i),

8In the discrete setting, we assume x to be integral, i.e., xij ∈ {0, 1}, ∀(i, j).
9We note that this direct transfer is always possible in the case of bivalued preferences, which may not be the case

for general additive preferences, and hence the problem for general additive preferences is still open.
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which is
p(xb)p(xl) < p(x′b)p(x

′
l).

Expanding it, we get
p(xb)p(xl) < (p(xb)− pc)(p(xl) + pc).

Simplifying it, we get
pc < p(xb)− p(xl),

which is clearly true if x is not an pEF1 allocation. Since bivalued preferences are already (β − 1)-
rounded utilities, our running time analysis in Appendix 4 can be adapted to show convergence
polynomial in n,m and 1/(β − 1).

2.3 PPAD-Hardness for the Exchange Model

In this section, we sketch the proof of Theorem 2, i.e., computing a (1 − 1/poly(n))-approximate
CE of an exchange instance is PPAD-hard, even if the instance satisfies sufficiency conditions (SC1

and SC2) of Theorem 4 (see Section 5 for the formal and detailed proof). We give a polynomial
time reduction from the problem of computing a Nash equilibrium of a normalized polymatrix game,
a known PPAD-hard problem [CPY17].

A polymatrix game is represented by a game graph where each node is a player who plays
a two-player game with each of her neighbors. She has to play the same strategy with each of
her neighbors and her payoff is the sum of the payoffs on each of her incident edges. If there are
n players and each of them has exactly two strategies to choose from, then such a game can be
represented by 2n×2n matrix. When thought of it as n×n block matrix, where each block is 2×2
matrix, then (i, j)th block is the payoff matrix of player j for the game on edge (i, j).

Problem 6. (Normalized Polymatrix Game) [CPY17]
Given: A 2n × 2n rational matrix M with every entry in [0, 1] and Mi,2j−1 + Mi,2j = 1 for all
i ∈ [2n] and j ∈ [n] .
Find: 1/n-approximate Nash equilibrium: Strategy vector x ∈ R2n

≥0 such that x2i−1 + x2i = 1 and

xT ·M∗,2i−1 > xT ·M∗,2i + 1
n =⇒ x2i = 0.

xT ·M∗,2i > xT ·M∗,2i−1 + 1
n =⇒ x2i−1 = 0.

where M∗,k represents the kth column of the matrix M.

Given an instance I = 〈M〉 of the polymatrix game, we create an instance of chore division
E(I) = 〈A ∪ B, d(·, ·), w(·, ·)〉, such that given any CE in E(I), we can determine in polynomial
time an equilibrium strategy vector x for I. Since we will have to create many different types of
agents and chores, for ease of notation, we use d(i, j), w(i, j) and p(j) instead of dij , wij and pj
respectively in this section and in Section 5.

Sketch of the Reduction. The entries of matrix M are encoded into endowments w(·, ·) of
agents, and the equilibrium strategy vector x of the polymatrix game I can be extracted from
the price vector at a CE of E(I). The key properties that our hard instance E(I) exhibits are
pairwise equal endowments, fixed earning, price equality, price regulation and reverse ratio amplifi-
cation (we will give a precise definition of these properties shortly). These techniques (constructing
hard instances exhibiting these properties) have been used earlier to prove PPAD-hardness for the
exchange model with only goods when agents have constant elasticity of substitution (CES) util-
ities [CPY17] and even for the Fisher model when agents have separable piecewise linear concave
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(SPLC) utilities [CT09]. However, the challenge is to construct these gadgets, in particular the
reverse ratio amplification gadget (a brief description will be given towards the end of this section)
and make them work together only using linear disutility functions; as clearly this is not possible
in case of goods, when agents have linear utility functions.

We now describe our instance E(I). To encode the entries of the matrix M of the poly-
matrix game, we introduce two sets of 2n chores in E(I), namely B = {b1, b2, . . . , b2n} and
B′ = {b′1, b′2, . . . , b′2n}. For each i, j ∈ [2n], we add an agent aij who brings Mi,j units of chore b′i.
The disutility values of these agents are as follows:

∀i ∈ [2n], j ∈ [n], d(ai,2j−1, b2j−1) = (1− α) and d(ai,2j−1, b2j) = (1 + α)

d(ai,2j , b2j−1) = (1 + α) and d(ai,2j , b2j) = (1− α),

for some infinitesimally small α > 0. The disutility values that are not specified are all infinity.
Observe that the agents ai,js own chores of B′, but can only do chores of B. Now, to complete the
loop, we introduce another set of 2n agents, namely a′1, a

′
2, . . . a

′
2n, where for each i ∈ [2n] agent a′i

brings n units of chore bi, and can do only the chores in set B′.

∀i ∈ [n], d(a′2i−1, b
′
2i−1) = (1− α′) and d(a′2i−1, b

′
2i) = (1 + α′)

d(a′2i, b
′
2i−1) = (1 + α′) and d(a′2i, b

′
2i) = (1− α′),

for some small α′ � n2 · α. Next, we add a set of 2n agents for whom we will ensure certain fixed
earnings, namely af1 , . . . , a

f
2n, and they can do only chores in set B.

d(af2i−1, b2i−1) = (1− α) and d(af2i−1, b2i) = (1 + α)

d(af2i, b2i−1) = (1 + α) and d(af2i, b2i) = (1− α),

The instance E(I) has additional agents and chores, and none of them has finite disutility
towards the chores in set B. At any CE, our instance satisfies the following five key properties.

• Pairwise equal endowments: In E(I), the total endowment of chore b2i−1 equals the total
endowment of the chore b2i, and similarly total endowment of b′2i−1 equals total endowment
of b′2i. Also the total endowments of each of these chores is O(n); from the above construction
it is easy to see that this holds for chores in set B and B′.

• Fixed earning: In any CE, for each i ∈ [2n], we have the total earning of agent afi is (1−α′) ·
(2n−

∑
j∈[2n] Mj,i).

• Price equality: In any CE, the sum of prices of the chores b2i−1 and b2i is the same for all
i ∈ [n], and it is equal to the sum of prices of the chores b′2i−1 and b′2i for all i ∈ [n]. Since
the prices of the chores at a CE are scale invariant, we can assume, without loss of generality,
that for all i ∈ [n], we have p(b2i−1) + p(b2i) = p(b′2i−1) + p(b′2i) = 2.

• Price regulation: In any CE, for all i ∈ [2n] we have

1− α
1 + α

≤ p(b2i−1)

p(b2i)
≤ 1 + α

1− α
and

1− α′

1 + α′
≤
p(b′2i−1)

p(b′2i)
≤ 1 + α′

1− α′
.

• Reverse ratio amplification: In any CE, for all i ∈ [2n], if p(b2i−1)
p(b2i)

= 1+α
1−α , then we have

p(b′2i−1)

p(b′2i)
= 1−α′

1+α′ and similarly when p(b2i−1)
p(b2i)

= 1−α
1+α , we have

p(b′2i−1)

p(b′2i)
= 1+α′

1−α′ .
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We show that our instance E(I) satisfies both SC1 and SC2 conditions of Theorem 4, and
thereby it admits a CE. Using the above five properties satisfied by a CE, we next describe how
the prices at CE give the equilibrium strategy vector of the polymatrix game I. Given a CE price
vector p of E(I), construct a vector x as follows.

∀i ∈ [2n], xi =
p(b′i)− (1− α′)

2 · α′
(6)

We will show that x satisfies the Nash equilibrium conditions described in Problem 6 for instance
I, thereby completing the reduction. First, let us argue why x is a valid strategy profile for the
game, i.e., for each i ∈ [n], we have x2i−1 ≥ 0, x2i ≥ 0, and x2i−1 + x2i = 1. Using the price
equality and price regulation properties, it follows that for each i ∈ [2n], (1−α′) ≤ p(b′i) ≤ (1 +α′).
This immediately implies xi ≥ 0, ∀i ∈ [2n]. Furthermore, for each i ∈ [n], we have x2i−1 + x2i =
p(b′2i−1)+p(b′2i)−2(1−α′)

2·α′ = 2α′

2α′ = 1.
Next, we will show that x satisfies the equilibrium conditions, namely, if xT ·M∗,2i > xT ·

M∗,2i−1 + 1
n , then x2i−1 = 0; the proof for the symmetric condition is similar. To show that

x2i−1 = 0, it suffices to show that p(b′2i−1) = (1− α′) (by (6)). So let us assume that xT ·M∗,2i >
xT ·M∗,2i−1 + 1

n . The positive correlation between x and p imply that the total endowment money
of the agents {aj,2i | j ∈ [2n]} is larger than that of the agents {aj,2i−1 | j ∈ [2n]}. Since the agents
{aj,2i | j ∈ [2n]} prefer chore b2i to b2i−1 and the agents {aj,2i−1 | j ∈ [2n]} prefer chore b2i−1 to
b2i, the difference in their endowment money would further enforce that chore b2i is higher priced
than chore b2i−1. Next we formalize this intuition, and how that leads to p(b′2i−1) = (1− α′).

The only agents who can consume chores b2i−1 and b2i are the ones in {aj,2i, aj,2i−i | j ∈
[2n]}∪{afi | i ∈ [2n]}. Out of all these agents, the agents A(b2i) = {aj,2i | j ∈ [2n]}∪{af2i | i ∈ [n]} are
the agents that have (1−α) disutility towards b2i and (1+α) disutility towards b2i−1. Symmetrically
define set A(b2i−1). The total endowment money of the agents in A(b2i) (say P (b2i)) is,

=
∑
j∈[2n]

Mj,2i · p(b′j) + (1− α′) · (2n−
∑
j∈[2n]

Mj,2i) (fixed earning of af2i)

=
∑
j∈[2n]

Mj,2i · (2α′ · xj + (1− α′)) + (1− α′) · (2n−
∑
j∈[2n]

Mj,2i) (by equation (6))

=
∑
j∈[2n]

2α′ · xj ·Mj,2i + (1− α′) ·
∑
j∈[2n]

Mj,2i + (1− α′) · (2n−
∑
j∈[2n]

Mj,2i)

= 2α′xT ·M∗,2i + 2n · (1− α′).

Similarly, the total endowment price of the agents in A(b2i−1) (say P (b2i−1)) is 2α′xT ·M∗,2i−1 +
2n · (1−α′) which is less than P (b2i). Recall again that, agents A(b2i)∪A(b2i−1) can only consume
chores b2i and b2i−1, and no other agents can consume these two chores. We now prove that if A(b2i)
earn all their endowment money of P (b2i) by only consuming (doing) chore b2i, then the price of
b2i (p(b2i)) has to be significantly high, leading to the violation of the price-regulation property: By
pairwise equal endowments property, we have equal linear total endowments of both b2i and b2i−1,
say cn. Therefore, if the agents in A(b2i) earn all their endowment money of P (b2i) only from chore
b2i, we have p(b2i) ≥ P (b2i)/(cn), and p(b2i−1) ≤ P (b2i−1)/(cn), implying that

p(b2i)− p(b2i−1) ≥ P (b2i)− P (b2i−1)

cn
=

2α′ · (xT ·M∗,2i − xT ·M∗,2i)

cn
≥ 2α′ · 1/n

cn
� 2α (as

α′

n2
� α).

Since p(b2i) + p(b2i−1) = 2 (by the price equality property), this immediately implies that
p(b2i)/p(b2i−1) > (1 +α)/(1−α) (violation of the price regulation property). This implies that the
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agents in A(b2i) earn some of their endowment money of P (b2i) from the chore b2i−1 as well. Since all
agents inA(b2i) have a disutility of 1−α for the chore b2i and 1+α for the chore b2i−1, agents inA(b2i)

can do some amount of b2i−1 only if p(b2i−1)
p(b2i)

≥ 1+α
1−α . Then, the price regulation property dictates

that p(b2i−1)
p(b2i)

= 1+α
1−α . Finally, by reverse ratio amplification property, we have

p(b′2i−1)

p(b′2i)
= 1−α′

1+α′ . This

implies p(b′2i−1) = (1 − α′) and thereby x2i−1 = 0, when xT ·M∗,2i > xT ·M∗,2i−1 + 1
n . A very

symmetric argument will show that if xT ·M∗,2i−1 > xT ·M∗,2i + 1/n, then x2i = 0.

While it is still intuitive for our choice of α′ � n2 · α, that we can enforce p(b2i−1)
p(b2i)

= 1+α
1−α when

xT ·M∗,2i > xT ·M∗,2i−1 + 1
n , perhaps the most subtle and mysterious gadget in our reduction is the

reverse ratio amplification gadget. This is also the most crucial gadget as such a gadget cannot be
realized in the linear exchange setting with divisible goods (all the other gadgets can be realized).
We now briefly sketch the reverse ratio amplification gadget.

Reverse Ratio Amplification Gadget. We sketch the reverse ratio amplification gadget for
α′ = 3α/2 and in the end elaborate how to make it work for α′ � n2 ·α. For each i ∈ [n], we add an
agent ai that has an endowment of δ = nα/2 of both chores b′2i−1 and b′2i and has a disutility of 1
for both chores b2i−1 and b2i (and∞ for all other chores), implying that ai will earn her endowment

money from the more expensive chore among b′2i−1 and b′2i. We now show that when p(b2i−1)
p(b2i)

= 1+α
1−α ,

then we have
p(b′2i−1)

p(b′2i)
= 1−α′

1+α′ . So assume that p(b2i−1)
p(b2i)

= 1+α
1−α . The price equality property dictates

that p(b2i−1) = 1 + α and p(b2i) = 1− α.
Now recall agents a′2i−1 and a′2i. They own n units of chores b2i−1 and b2i respectively and

therefore their respective total endowment are n · (1 +α) and n · (1−α). Like earlier, we now prove
that if a′2i−1 earns her entire endowment money of n(1 + α) from the chore b′2i−1, then this causes
violation of the price regulation property: If a′2i−1 earns her entire endowment from b′2i−1, we have

the price of b′2i−1 to be at least n(1+α)
c′n = 1+α

c′ , where c′n is the total endowment of chores b′2i−1

and b′2i (they are equal and linear in n by pairwise equal endowments property). Similarly, the
only other agents having finite disutility towards the chore b′2i are the agents a′2i and ai. Therefore,
using δ = n · α/2, and p(b′2i−1) + p(b′2i) = 2 by the price equality property, we have,

p(b′2i) ≤
n(1− α) + δ · (p(b′2i−1) + p(b′2i))

c′n
=
n(1− α) + 2δ

c′n
=
n(1− α) + nα

c′n
=

1

c′
.

Therefore, we have that p(b′2i−1) ≥ (1 + α)/c′ > 1/c′ ≥ p(b′2i). This implies that the agent ai
earns her entire endowment price of δ ·(p(b′2i−1)+p(b′2i)) = 2δ from the chore b′2i−1 (as the disutility

to price ratio of b′2i−1 is strictly less than that of b2i for ai). Thus, we have that p(b′2i−1) ≥ n(1+α)+2δ
c′n

and p(b′2i) ≤
n(1−α)
c′n , implying that, if we set α′ = 3α/2, then

p(b′2i−1)

p(b′2i)
≥ n · (1 + α) + 2δ

n · (1− α)
=
n · (1 + α) + nα

n · (1− α)
=

1 + 2α

1− α
>

1 + α′

1− α′
(as δ = n · α/2)

Therefore, we have violation of price regulation. This implies that at a CE, agent a′2i−1 earns
some of her endowment money from the chore b′2i. Since a′2i−1 has a disutility of (1− α) for b′2i−1

and (1 + α) for b′2i, she can do the chore b′2i only if p(b′2i−1)/p(b′2i) ≥ (1 − α)/(1 + α). Then, by
the price regulation property, we have p(b′2i−1)/p(b′2i) = (1 − α)/(1 + α). The proof for the case
p(b2i−1)
p(b2i)

= 1−α
1+α =⇒ p(b′2i−1)

p(b′2i)
= 1+α′

1−α′ is symmetric.10

10Note that we are crucially using the fact that increasing the price of a chore makes it more attractive to an
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When α′ � n2 ·α, i.e., when we need significantly higher amplification, we create a sequence of
K ∈ O(log(n)) sets of chores B1 = {b11, b12, . . . , b12n}, B2 = {b21, b22, . . . , b22n}, . . . , BK = {bK1 , bK2 ,
. . . , bK2n} with B1 = B and BK = B′. We enforce reverse ratio amplification between every

consecutive sets of chores, i.e., for all ` ∈ [K] and for all i ∈ [n], if
p(b`2i−1)

p(b`2i)
= 1+α`

1−α`
, then we

have
p(b`+1

2i−1)

p(b`+1
2i )

=
1−α`+1

1+α`+1
and similarly when

p(b`2i−1)

p(b`2i)
= 1−α`

1+α`
, then we have

p(b`+1
2i−1)

p(b`+1
2i )

=
1+α`+1

1−α`+1
, where

α`+1 = 3α`/2, thereby giving us the desired amplification from B to B′.
We re-emphasize that while the concepts of the gadgets used in our reduction are standard [CPY17,

CT09], the key contribution is to realize these gadgets with just linear disutility functions. As a
consequence, there are subtle, yet important technical differences to gadgets in [CPY17, CT09].
For instance, our amplification sequence has to be alternating, while the one in [CPY17] is not.

The formal proof with all the details can be found in Section 5, where we give the complete
construction and prove that the instance exhibits all of the above five properties, as well as meets
the sufficient conditions (Theorem 4) for existence of CE.

3 Applications and Further Related Work

The CEEI model is applicable to allocation problems naturally arising in a wide range of real-
life settings such as dividing tasks among various team members, deciding teaching assignments
between faculty, or splitting liabilities when dissolving a partnership. The exchange model also
occurs naturally in many day to day scenarios, e.g., a set of university students teaching each other
in a group study, to optimize the time and effort required. At a larger scale, timebanks11 are such
reciprocal service exchange platforms which have around 30,000 to 40,000 users from the United
States. In a timebank, individuals from a certain community give services to one another and earn
time credit. Thereafter, each individual uses their time credit to receive services. Competitive
equilibrium (CE) provides a systematic way to do the exchange: it consists of prices (payment)12

for chores and an allocation such that all chores are completely assigned and each agent gets her
most preferred bundle (optimal bundle) subject to her budget constraint13.

The problem of computing CE has been extensively studied. We only discuss previous work
that appears most relevant. For linear CEEI (Fisher) model with goods, the CE set is captured
by the Eisenberg-Gale convex program [EG59], which maximizes the Nash welfare defined as the
geometric mean of agents’ utilities. Later, Shmyrev [Shm09] obtained another convex program
for this problem. [CDG+17] provides a dual connection between these and other related convex
programs. A combinatorial polynomial-time algorithm for computing a CE is given in [DPSV08].
Later, strongly polynomial-time algorithms are obtained for this problem [Orl10, Vég12].

For the linear exchange model with goods, many convex programming formulations were ob-
tained; see [DGV16] for details. Initial polynomial-time algorithms for this model are based on
ellipsoid and interior-point methods [Jai07, Ye08]. The first combinatorial polynomial-time algo-
rithm is given in [DM15], which was later improved in [DGM16]. Recently, [GV19] gives the first
strongly polynomial-time algorithm for this problem.

The equilibrium computation problem in all models with goods is basically PPAD-hard when-

agent (agent ai is only interested in b′2i−1 whenever it has a higher price than b′2i). This property is not satisfied in
the linear exchange setting with divisible goods (in fact this is the fundamental difference between the two settings)
where we cannot realize this gadget.

11https://timebanks.org/
12Equivalent of time credit in time banks.
13Here the budget constraint of an agent is that she has to earn enough to pay for her initial set of chores.
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ever the CE set is non-convex. In the CEEI (Fisher) model, it is polynomial-time for weak
gross substitutes (WGS) and homogeneous utility functions [CMPV05, Eis61], and PPAD-hard
for separable piecewise linear concave (SPLC) utilities [CT09]. In the exchange model, it is
polynomial-time for WGS utilities [CMPV05, GHV21], and beyond that, it is essentially PPAD-
hard [CPY17, CDDT09, CSVY06, GMVY17]. More recently, [CCPY22] shows PPAD-hardness for
the Hylland-Zeckhauser model [HZ79], which is essentially the CEEI model under linear preferences
with additional matching constraints.

For the linear CEEI model with chores, [BMSY17] consider the case where all (dis)utility values
to be finite. [BMSY17] show that critical points of the geometric mean of agent’s disutilities on
the (Pareto) efficiency frontier are the CE profiles. By building on this characterization, [BCM22]
give an FPTAS for finding an approximate CE. For the special case of constantly many agents (or
chores), polynomial-time algorithms are known for computing a CE [BS19, GM20].

For the linear exchange model with chores, [CGMM21] gives a linear complementarity problem
(LCP) formulation and a complementary pivot algorithm for computing a CE.

4 Combinatorial Algorithm

In this section, we give an exact Õ(n2m2/α2)-time algorithm for instances where every disutility
value can be expressed as a power of (1 + α), i.e., dij = (1 + α)kij for some polynomially bounded
integer kij . Then, we show how to modify the same algorithmic framework to get a FPTAS for
determining a CEEI when we make no assumption on the disutility values.

Our algorithm is iterative and each iteration comprises of two phases: (1) the price update
phase that changes the prices of the chores without changing the allocation and then (2) allocation
update phase which changes the allocation without altering the prices. Throughout the algorithm,
we maintain that all chores are completely allocated and all agents earn their money from their
respective MPB chores. Thus, the main goal of our algorithm is to find identical earnings for the
agents (as this ensures that we are at a CEEI) while maintaining the invariants. Thereafter, we
show that at the end of each iteration, we can improve the Nash welfare of the allocation by some
multiplicative factor. We now elaborate the two phases.

4.1 Price Update

In this phase, we identify the chores in demand : Let ei denote the earning of agent i, i.e., ei =∑
j xijpj where xij is the amount of chore j assigned to i and pj is the payment for doing unit amount

of chore j. Let S be the set of agents that have earnings less than one, i.e., S = {i | ei < 1} and let
Γ(S) be the set of MPB chores for the agents in S, i.e., Γ(S) = {j | dij/pj = MPB i for some i ∈ S}.
We call every chore in Γ(S) as a chore in demand. Thereafter, we decrease the prices of all the
chores in demand (chores in Γ(S)) until some agent in S gets interested in a chore in [m] \ Γ(S),
i.e., we have a new MPB edge from an agent in S to a chore outside Γ(S). Note that although this
update further decreases the earnings of the agents in S, it does not decrease Nash welfare as the
disutility of each agent is independent of the prices (depends only on the allocation). The price
update is summarized in Algorithm 1.
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Algorithm 1 Price-Update(x, p, S)

Γ(S)← {j | ∃i ∈ S, s.t. dij/pj = MPB i}
γ ← mini∈S,j /∈Γ(S)

MPBi·pj
dij

.

for j ∈ γ(S) do
pj ← γ · pj .

for i ∈ S do
ei ← γ · ei.

4.2 Allocation Update

This is the second phase of an iteration in our algorithm. In this phase, we aim to determine an
allocation that balances the earnings of the agents with the help of the new MPB edges created
during the price update. Let E denote the set of new MPB edges that appear after the price
update phase and let J = {j | (i, j) ∈ E}. Let emax = max i∈Sei and emin = mini/∈Sei. The earning
balancing is done depending on the total prices of the chores in J . In particular, if

∑
j∈J pj >

(emin − emax )/2, then we compute an allocation (or equivalently a money flow) that maximizes the
product of earnings (we call this procedure Balance-allocation(·))14. If

∑
j∈J pj ≤ (emin − emax )/2,

then we increase the earning of the agents in S and decrease that of agents in [n] \S by completely
allocating the chores in J to agents in S along the MPB edges. The whole procedure is summarized
in Algorithm 2.

Algorithm 2 Allocation-Update(x, p, S).

E ← all new MPB edges from S to [m] \ Γ(S) after price-update.
J ← {j | (i, j) ∈ E}.
emax ← max i∈Sei and emin ← mini∈[n]\Sei.
if
∑

j∈J pj > (emin − emax )/2 then
(x, p, S)← Balance-allocation(p)

else
for all j ∈ J do

Pick an arbitrary i ∈ S such that (i, j) ∈ E.
for all i′ ∈ [n] \ S such that xi′j > 0, set xi′j ← 0 and update ei′ = ei′ − xi′jpj
Set xij ← 1 and update ei = ei + pj .

Algorithm 3 Balance-allocation(p)

x← argmaxx∈Rnm
≥0 and

∑
i∈[n] xij=1

∏
i∈[n] ei, where ei =

∑
j∈[m] xijpj .

S ← the set of agents with lowest surplus.

Overall, in the allocation-update phase, we determine an allocation that improves the Nash
welfare of the allocation subject to the agents earning only along their MPB edges.

14We will show later in this section that we choose S in such a way that emin ≥ emax .
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4.3 Main Algorithm

Our overall algorithm alternates between the price-update and allocation-update phases. We start
with an initial set of prices (where each price is of the form (1 + α)k for some integer k15) and an
allocation of the chores to the agents along MPB edges. We set S to be the set of agents with lowest
earning. Thereafter, we run the price-update and allocation-update phases alternatively until all
agents have equal budgets (see Algorithm 4). The convergence of our algorithm follows from the fact
that after polynomially many iterations, we can observe an improvement of 1 + Ω(α2) in the Nash
welfare. Since the Nash welfare is upper bounded by (n ·Dmax)n where Dmax = max(i,j):dij<∞ dij ,

our algorithm will converge after poly(n,m, log(Dmax)/ log(1 + α2)) = poly(n,m, log(Dmax), 1/α)
iterations.

Algorithm 4 Full Algorithm

for all chores j ∈ [m] do
pj ← mini∈[n]dij .

(x, p, S)←Balance-allocation(p).
while ∃i, j ∈ [n] such that ei 6= ej do

Price-update(x, p, S).
Allocation-update(x, p, S)

Return x, p.

We first argue about the correctness of the algorithm. The next series of observations will show
that all chores are allocated and are allocated only along MPB edges. Therefore, if we have ei = ej
for all i, j ∈ [n], then we are at a CEEI.

Observation 7. Throughout the algorithm, the prices of the chores are powers of (1 + α). Fur-
thermore, any price update phase decreases the prices of the chores in Γ(S) and the earnings of the
agents in S by at least 1 + α.

Proof. We prove our claim by induction on the iterations. The claim holds by definition during the
first iteration as we initialize each price pj as max i∈[n]dij which is a power of 1 + α. Now consider
any arbitrary iteration of the algorithm. By induction hypothesis, we have the prices to be powers
of 1 +α. Since the disutilities are also powers of 1 +α, we have that MPB i is also a power of 1 +α

for all i ∈ [n]. Let i∗ ∈ S and j∗ /∈ Γ(S) be such that γ =
pj∗ ·MPB i∗

di∗j∗
. Note that γ is also a power of

1 + α and since the prices are scaled by γ, the new set of prices will also remain powers of 1 + α.
We are left to show that γ ≤ (1 +α)−1. Since γ is a power of (1 +α), it suffices to show that γ < 1
or equivalently MPB i∗ < di∗j∗/pj∗ , which is true as otherwise j∗ ∈ Γ(S).

Observation 8. At the beginning of every iteration, for all agents i ∈ [n] \S and chores j ∈ Γ(S),
we have xij = 0.

Proof. We prove our claim by induction on the iterations of the algorithm. We first show why this
holds for the first iteration: we initialize S as the set of agents with lowest earning after computing
an allocation that maximizes the product of budgets. Assume that there is an agent i′ ∈ [n] \ S
and a chore j ∈ Γ(S) such that xi′j > 0. Let i be an agent in S such that dij/pj = MPB i (note
that such an i exists by the definition of S and Γ(S)). Also note that ei < ei′ . We can change
the allocation by increasing xij by ε < xi′j and decreasing xi′j by ε such that ei increases and ei′

15Note that k may be negative.
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decreases, but the sum of the earnings remain the same (in particular ei+ei′ remains same). Thus,
the product of budgets improves, contradicting the fact that we started with an allocation with
maximum product.

Now, consider any iteration of the algorithm. Let S′ and Γ(S′) denote the set S and Γ(S) at
the beginning of the previous iteration. If the set S was updated from S′ through a call to balance-
allocation() in the previous iteration, then we can make a same argument as the induction base case.
Otherwise, the set S = S′, however Γ(S′) contains more chores than Γ(S) (as a result of new MPB
edges appearing after the price-update phase). Notice that for all chores j in Γ(S)∩Γ(S′) (which is
Γ(S′)), we have xij = 0 for all j ∈ [n] \ S by induction hypothesis. For all chores j ∈ Γ(S) \ Γ(S′),
we have set xij = 0 for all i ∈ [n] \ S and j ∈ Γ(S) by allocating all the chores in Γ(S) \ Γ(S′)
completely to agents in S in Algorithm 2.

Observation 8 helps us prove that throughout the algorithm, all agents earn their money from
their MPB chores and all chores remain fully allocated.

Lemma 9. Throughout the algorithm,

• each agent earns her money only from her MPB chores, and

• for all j ∈ [m] we have
∑

i∈[n] xij = 1.

Proof. In the very first iteration of the algorithm, we initialize the prices such that every chore has
at least one MPB edge incident to it: Note that for all i ∈ [n], we have MPB i ≥ 1 as dij/pj ≥ 1
for all i ∈ [n] and j ∈ [m] as pj is set to mini∈[n]dij . Thus, for each chore j there exists an agent
i ∈ argmini∈[n]dij such that (i, j) is an MPB edge. Then, a call to Balance-allocation() ensures
that all chores are completely allocated along MPB edges to the agents as otherwise we can increase
the earning of some agent by allocating an underallocated chore along an MPB edge and thereby
increase the product of earnings. We now show that the invariants are maintained during the price
update and allocation update phases.
Price Update: During this phase, the prices of the chores in [m] \ Γ(S) and the earnings of the
agents in S are scaled by γ < 1 until a new MPB edge appears from some agent(s) in S to some
chore in Γ(S). Let p′ and e′ denote the new price and earning vector after price update. First
note that there are no MPB edges from agents in S to chores in [m] \ Γ(S) (by definition of Γ(S)).
Now consider an agent i ∈ S. When we decrease the prices of chores in Γ(S), all MPB chores of i
will remain MPB chores as they are in Γ(S) and the prices of all chores in Γ(S) decreases by the
same factor γ. So agent i still earns from her MPB chores. Also, e′i = γ · ei = γ ·

∑
j∈[m] xij · pj =∑

j∈Γ(S) xij · (γ · pj) =
∑

j∈Γ(S) xij · p′j . Thus, all agents in S earn their entire earning from MPB

chores after price update. Now, consider an agent i′ /∈ S. By Observation 8, xi′j = 0 for all
j ∈ Γ(S), i.e., agent i′ earns all of ei′ from her MPB chores in [m] \ Γ(S). Since the prices of the
chores in [m] \ S and the earnings of the agents in S remains unchanged (e′i′ = ei′), agent i′ earns
all her money of e′i′ from her MPB chores in Γ(S). Thus, all agents in [n] \ S also earn all their
money from MPB chores after price update. Lastly, since the allocation remains unchanged during
price update, all the chores remain completely allocated at the end of price update.
Allocation update: In this phase, the prices remain unaltered, implying that the MPB configuration
does not change. If the allocation is updated through a call to Balance-allocation(), then each agent
will earn their money from MPB chores and all chores will be completely allocated as otherwise we
can increase the earning of some agent by allocating an underallocated chore along an MPB edge
and thereby increase the product of earnings. If the allocation update does not involve a call to
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Balance-allocation(), then all the chores in J16 are allocated to agents in S along MPB edges. The
earnings of the agents are adjusted accordingly. Therefore, all agents earn their money from MPB
chores and all chores are completely allocated.

We now prove a crucial invariant about the earnings of the agents in the S that our algorithm
maintains throughout.

Observation 10. At the beginning of every iteration of our algorithm, we have max i∈Sei <
mini/∈Sei where e is the earning vector.

Proof. We prove our claim by induction on the iterations. The base case is trivially true as in
the first iteration, S is set by Balance-allocation() to be the set of agents with lowest earning.
Therefore we have emax < emin . Now consider any arbitrary iteration of the algorithm. If S was
set by a call to Balance-allocation() in the previous iteration of the algorithm, then we trivially
have emax < emin . So let us assume otherwise, i.e., Balance-allocation() was not invoked in the
previous iteration. Let S′ be the set S and e′ be the earning vector at the beginning of the previous
iteration. By induction hypothesis, we have max i∈S′e

′
i < mini/∈S′e

′
i. Let ẽ be the earning vector

after the price-update phase (and before the allocation update phase). In the price update phase,
we decrease the prices of the chores in Γ(S) and the earnings of the agents in S and thus we have
max i∈S ẽi ≤ max i∈Se

′
i ≤ mini/∈Se

′
i = mini/∈S ẽi.

Let E denote the set of new MPB edges that appear after price update and let J = {j | (i, j) ∈
E}. Let ẽmax = max i∈S ẽi and ẽmin = mini/∈S ẽi. Since we are in the case where Balance-allocation()
is not invoked, we have (

∑
j∈J pj < (ẽmin− ẽmax )/2). Observe that Algorithm 2 allocates the chores

in J to the agents in S along the MPB edges. As a result, the total earnings of the agents in S
increases and that of the agents in [n] \ S decreases (by the same amount). Let δi = ei − ẽi for all
i ∈ S and δi = ẽi− ei for all i /∈ S. Note that

∑
i∈S δi =

∑
i∈[n]\S δi =

∑
j∈J pj . Therefore we have,

max i∈Sei ≤ ẽmax +
∑
i∈S

δi

= ẽmax +
∑
j∈J

pj

< ẽmax + (ẽmin − ẽmax )/2

= ẽmin − (ẽmin − ẽmax )/2

< ẽmin −
∑
j∈J

pj

= ẽmin −
∑
i∈S

δi

≤ mini∈[n]\Sei .

We now show that the allocation-update can only increase the product of earnings of the agents.

Lemma 11. Let e = 〈e1, e2, . . . , en〉 and e′ = 〈e′1, e′2, . . . , e′n〉 be the earning vector before and
after the call to Balance-allocation(p) in an allocation-update phase of the algorithm. We have∏
i∈[n] e

′
i ≥ (1 + α2/16)

∏
i∈[n] ei.

16Recall from Algorithm 2, that E is the set of new MPB edges that appear from agents in S to chores in [m]\Γ(S)
and J = {j | (i, j) ∈ E}
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Proof. Let ẽ = 〈ẽ1, ẽ2, . . . , ẽn〉 be the earning vector before the price-update phase in the current
iteration of the algorithm. By Observation 8, we have max i∈S ẽi ≤ mini/∈S ẽi. By Observation 7, we
decrease the prices of the chores in Γ(S) and the earnings of the agents in S by a factor of at least
1+α. Let e be the new earning vector before the allocation update phase. We have (1+α) ·ei ≤ ẽi
for all i ∈ S, and ei = ẽi for all i /∈ S. Therefore, we have (1 + α) · emax < emin

17.
Since the balanced allocation outputs an allocation that maximizes the product of the earnings,

it suffices to show the existence of an allocation x′ such that
∏
i∈[n] e

′
i ≥ (1 +α2/16)

∏
i∈[n] ei where

e′i =
∑

j∈[m] x
′
ijpj . Let x be the allocation before the allocation-update phase of the algorithm. Let

E denote the set of new MPB edges after the price update and let J = {j | (i, j) ∈ E}. Note that
prior to allocation update, xij = 0 for all i ∈ S and j ∈ J . We initially set x′ = x and then change
the allocation of the chores in J as follows: For each new MPB edge (i, j) ∈ E, and for each agent
i′ /∈ S such that x′i′j > 0, we increase the consumption of the chore j for agent i and decrease the
consumption of chore j for i′ by the same amount until

• i′ does not consume j anymore, i.e., x′i′j = 0, or

• i consumes j entirely, i.e., x′ij = 1, or

• the total increase in the earnings of the agents in S is (emin−emax )/2, i.e.,
∑

i∈S e
′
i−
∑

i∈S ei =
(emin − emax )/2.

First note that x′ is a valid allocation as all the chores remain completely allocated in x′. Let
∆ denote the total increase in the earnings of the agents in S when we update the allocation to
x′ from x. Note that ∆ also equals the total decrease in the earnings of the agents in [n] \ S as
every time we increase the earning of an agent in S by some δ > 0, we also decrease the earning
of some agent in [n] \ S by δ. It is also clear that ∆ = (emin − emax )/2 as otherwise all the goods
in J would be completely allocated to agents in S and this would imply an increase in the earning
of the agents in S by

∑
j∈[m] pj which is larger than emin − emax > (emin − emax )/2 (if Balance

allocation() is called,
∑

j∈J pj > emin − emax ). We are now ready to show the improvement in the
product of earnings.

Let δi = e′i − ei for all i ∈ S and δi = ei − e′i for all i /∈ S. Note that δi ≥ 0 for all i ∈ [n]
and

∑
i∈S δi =

∑
i∈[n]\S δi = ∆ = (emin − emax )/2. We now make a technical claim which helps us

analyze the improvement in the product of earnings.

Claim 12. Let 0 ≤ y1 ≤ y2 ≤ · · · ≤ yk. Let δi ≥ 0 and γi ≥ 0 for all i ∈ [k]. Furthermore, let
y1 ≥

∑
j∈[k] γj. Then, we have

1.
∏
i∈[k](yi + δi) ≥

∏
i∈[k−1] yi · (yk +

∑
j∈[k] δj), and similarly,

2.
∏
i∈[k](yi − γi) ≥ (y1 −

∑
j∈[k] γj) ·

∏
2≤i≤k yi.

Proof. The proof follows immediately by the repeated applications of the following two facts. Given
four numbers x, y, λ1, λ2 such that λ1 + λ2 ≤ x ≤ y and

• (x+ λ1)(y + λ2) ≥ x(y + λ1 + λ2): We have,

(x+ λ1)(y + λ2) = xy + λ1y + λ2x+ λ1λ2

≥ xy + λ1y + λ2x

≥ xy + λ1x+ λ2x (as x ≤ y)

= x(y + λ1 + λ2).
17Recall from Algorithm 2, emin = mini∈[n]\Sei and emax = max i∈Sei.
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• (x− λ1)(y − λ2) ≥ (x− λ1 − λ2)y: We have,

(x− λ1)(y − λ2) = xy − λ1y − λ2x+ λ1λ2

≥ xy − λ1y − λ2x

≥ xy − λ1y − λ2y (as x ≤ y)

= (x− λ1 − λ2)y.

Observe that,∏
i∈[n]

e′i =
∏
i∈S

(ei + δi) ·
∏

i∈[n]\S

(ei − δi)

≥
∏
i∈S

ei ·
emax + ∆

emax
· emin −∆

emin
·
∏

i∈[n]\S

ei (by Claim 12)

=
∏
i∈[n]

ei ·
(
1 +

∆

emax

)
·
(
1− ∆

emin

)
=
∏
i∈[n]

ei ·
(
1 + ∆

emin − emax

emaxemin
− ∆2

emaxemin

)
=
∏
i∈[n]

ei ·
(
1 +

2∆2

emaxemin
− ∆2

emaxemin

) (
Substituting ∆ =

emin − emax

2

)
=
∏
i∈[n]

ei ·
(
1 +

∆2

emaxemin

)
(7)

Since (1 + α)−1emin ≥ emax , we have

∆ ≥ 1− (1 + α)−1

2
emin

=
α

2(1 + α)
emin

≥ α

4
emin (as α < 1).

Substituting this lower bound on ∆, and using the fact that emin ≥ emax , we have
∏
i∈[n] e

′
i ≥

(1 + α2/16)
∏
i∈[n] ei.

Lemma 13. Let e = 〈e1, e2, . . . , en〉 and e′ = 〈e′1, e′2, . . . , e′n〉 be the earning vector before and after
an allocation-update phase of the algorithm. We have,

∏
i∈[n] e

′
i ≥

∏
i∈[n] ei.

Proof. If the allocation update involves a call to Balance-allocation(), then the product of earnings
improves by Lemma 11. We now show that the product of the earnings improve.

Now consider the case where there is no call to Balance-allocation(). In this case, we have
(
∑

j∈J pj < (emin − emax )/2)18. Observe that Algorithm 2 allocates the chores in J to the agents
in S along the MPB edges. As a result, the total earnings of the agents in S increases and that of

18Recall that E is the set of new MPB edges that appear from S to [m] \ S after the price update phase and
J = {j | (i, j) ∈ E}.
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the agents in [n] \ S decreases (by the same amount). Let δi = e′i − ei for all i ∈ S and δi = ei − e′i
for all i /∈ S. Note that

∑
i∈S δi =

∑
i∈[n]\S δi =

∑
j∈J pj . Therefore we have,∏

i∈[n]

e′i =
∏
i∈S

(ei + δi) ·
∏

i∈[n]\S

(ei − δi)

≥
∏
i∈S

ei ·
emax +

∑
i∈S δi

emax
·
emin −

∑
i∈[n]\S δi

emin
·
∏

i∈[n]\S

ei (by Claim 12)

=
∏
i∈[n]

ei ·
emax +

∑
j∈J pj

emax
·
emin −

∑
j∈J pj

emin
.

It suffices to show that
emax+

∑
j∈J pj

emax
· emin−

∑
j∈J pj

emin
> 1. This is indeed the case as emax +

∑
j∈J pj ≤

emin −
∑

j∈J pj , i.e., the values emax and emin move closer to each other while still maintaining the
same sum, implying that the product improves.

We are now ready to show convergence of our algorithm. We briefly sketch the overall idea: the
price-update step does not change our potential as our potential only depends on the allocation
which remains unaltered (even though the prices of the chores and the earnings of the agents
change). Thereafter, with the help of new MPB edges we are able to improve the product of
disutilities. However, note that during an allocation update, we do not change the prices of the
chores. Therefore, the disutility of an agent is proportional to her earning as Di(xi) = MPB i · ei
or equivalently NSW (x) =

∏
i∈[n] MPB i ·

∏
i∈[n] ei. Since an allocation update increases

∏
i∈[n] ei,

it also improves the Nash welfare of the allocation. We now present the theorem and its formal
proof.

Lemma 14. Algorithm 4 computes a CEEI in O(nm/α2 · log(nDmax)) iterations which involves
at most O(n/α2 · log(nDmax)) calls to Balance-allocation().

Proof. To this end, we first argue that the Nash welfare never decreases throughout the algorithm:
Note that NSW (x) =

∏
i∈[n]Di(xi) is independent of the prices of the chores and therefore does

not change during the price update phase. Prior to the allocation update, we can write each Di(xi)
as MPB i · ei. Therefore, NSW (x) =

∏
i∈[n] MPB i ·

∏
i∈[n] ei. Note that we do not alter the prices

of the chores during an allocation update and thus
∏
i∈[n] MPB i remains the same. By Lemma 13,∏

i∈[n] ei increases during an allocation update phase and thus the Nash welfare increases.
We now bound the total number of iterations that invokes a Balance-allocation(). By Lemma 11,∏

i∈[n] ei increases by (1 + α2/16) every time Balance-allocation() is invoked. Since
∏
i∈[n] MPB i

remains unaltered during allocation update, and NSW (x) =
∏
i∈[n] MPB i·

∏
i∈[n] ei, we can conclude

that each time Balance-allocation() is called, the Nash welfare increases by a factor of 1(+α2/16).
Since NSW (x) ≤ (nDmax)n and the Nash welfare never decreases throughout the algorithm by

Lemma 13, we can have at most O( log((nDmax)n)
log(1+α2/16)

) ∈ O(n/α2 log(nDmax)) many calls to Balance-

allocation().
We now bound the number of iterations where Balance-allocation() is not invoked. In this

case, note that |Γ(S)| increases during an allocation update phase as the chores in J get added to
Γ(S). Therefore, we can have at most O(m) consecutive iterations that does not invoke Balance-
allocation(). This implies that the total number of iterations of the algorithm is at most O(nm/α2 ·
log(nDmax)).

To obtain a quadratic running time for our algorithm, it suffices to show how to implement
Balance-allocation() in Õ(nm(n+m)) time. We now elaborate this.
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4.4 Implementing Balance-allocation() in O(nm(n+m) log(nm)) Time

We show that the problem of determining a Balance-allocation() can be reduced to the problem of
finding a lexicographically optimal flow [Fuj80], which can be determined in O(nm·(n+m) log(nm))
time.

Definition 15. [Fuj80] We are given a directed graph G = (V,E) with edge capacities. S+ is a
set of k source vertices, i.e., vertices in V without an incoming edge and t is a single sink vertex,
i.e., a vertex in V without an outgoing edge. Given any flow f in G, let δ+(v) denote the total
outflow from a vertex v ∈ V . A lexicographically optimal flow is a maximum flow f from S+ to t
such that the vector 〈δ+(s1), δ+(s2), . . . , δ+(sk)〉 is lexicographically maximum subject to s` ∈ S+

for all ` ∈ [k] and δ+(s1) ≤ δ+(s2) ≤ · · · ≤ δ+(sk).

We now show how lexicographically optimum flows can be used to implement the Balance-
allocation() subroutine. Given a price vector p, we define the market-network Mp = ([n] ∪ [m] ∪
{t}, E) as a digraph that contains the agents [n], chores [m] and a sink vertex t. The directed edges
from the agents to the chores are MPB edges at the prices p, i.e., (i, j) ∈ E is dij/pj = MPB i.
Edges from agents to chores have infinite capacity (meaning one can push any amount of flow
through them). There is a directed edge from each chore j to the sink t with a capacity of pj . Note
that the set of agents have no incoming edges. The main goal of Balance-allocation() is to find a
flow in the MPB graph that maximizes the product of the outflow of the sources. Once we have
such a flow f , it is easy to find the allocation as xij = fij/pj . We make an observation that any
flow that maximizes the product of outflows of the sources is a lexicographically optimum flow.

Lemma 16. Given a market-network G, a maximum flow f maximizes the product of outflows of
the sources,

∏
s∈S+ δ+(s) if and only if it is a lexicographically optimum flow.

Proof. We crucially use the following characterization of a lexicographically optimum flow given in
[Fuj80]

Claim 17. ( [Fuj80]) A maximum flow f is a lexicographically optimal flow if and only if it mini-
mizes the `2-norm of the outflow vector of the sources, i.e., the flow that minimizes

∑
s∈S+(δ+(s))2.

Therefore, it suffices to show that any flow that minimizes the `2-norm of the outflows of the
sources also maximizes the product of the outflows from the sources. This follows immediately
when we write the KKT conditions for both the convex programs. Consider the convex program
for minimizing the `2-norm of the outflows

minimize
∑
i∈[n]

(
∑

(i,j)∈E

fij)
2

subject to
∑

(i,j)∈E

fij = pj , ∀(i, j) ∈ E

fij ≥ 0, ∀(i, j) ∈ E

The optimum solution will satisfy the KKT conditions. Let λj be the free dual variable correspond-
ing to the constraint

∑
(i,j)∈E fij = pj and µij ≥ 0 be the dual variable corresponding to fij ≥ 0.

The KKT conditions require, in addition to primal and dual feasibility,

• Stationarity: For all (i, j) ∈ E, 2(
∑

(i,j)∈E fij)+λj−µij = 0 =⇒
∑

(i,j)∈E fij = (µij−λj)/2

• Complementary Slackness: For all (i, j) ∈ E, µij · fij = 0.
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Consider any i and j such that fij > 0. Then µij = 0. Then, we have
∑

(i,j)∈E fij = −λj/2. This
implies that all nodes i that have positive surplus towards the node j have the same outflow which
is equal to −λj/2. Since µij ≥ 0, this also implies that −λj/2 ≤ −(λj + µij)/2. This gives us the
following characterization of the optimum flow.

Observation 18. Let f be any flow in the market-network that minimizes the `2-norm of the
outflows. If there are two source nodes i and i′ that are adjacent to node j, and fij > 0, then (i)∑

(i,k)∈E fik =
∑

(i′,k)∈E fi′k or (ii)
∑

(i,k)∈E fik <
∑

(i′,k)∈E fi′k and fi′j = 0.

We will now show that any flow that satisfies the property in Observation 18, also maximizes
the product of outflows, implying that any flow that minimizes the `2-norm of the surpluses also
maximizes the product of outflows. To this end, consider the program of maximizing the product
of outflows or equivalently maximizing the sum of the logarithms of the outflows.

maximize
∑
i∈[n]

(log(
∑

(i,j)∈E

fij))

subject to
∑

(i,j)∈E

fij = pj , ∀(i, j) ∈ E

fij ≥ 0, ∀(i, j) ∈ E

(8)

Let λj be the free dual variable corresponding to the constraint
∑

(i,j)∈E fij = pj and µij ≥ 0 be
the dual variable corresponding to fij ≥ 0. The KKT conditions require, in addition to primal and
dual feasibility,

• Stationarity: For all (i, j) ∈ E, −1/(
∑

(i,j)∈E fij) + λj − µij = 0

• Complementary Slackness: For all (i, j) ∈ E, µij · fij = 0.

Consider any flow f that satisfies the property in Observation 18. We will find the dual variables
λjs and µijs that satisfy the KKT conditions of the convex program 8. We set λj = 1/(

∑
(i,j)∈E fij)

where i is a source node such that fij > 0. We set µij = λj − 1/(
∑

(i,j)∈E fij). We prove that fij ’s,
µij ’s and λj ’s satisfy the KKT conditions for the convex program (8).

• Stationarity: We set µij = λj − 1/(
∑

(i,j)∈E fij) for all (i, j) ∈ E. Therefore, for all i, j, we
have −1/(

∑
(i,j)∈E fij) + λj − µij = 0.

• Complementary slackness: For all (i, j) ∈ E where fij = 0, we have fij ·µij = 0. For all i, j
such that fij > 0, we have λj = 1/(

∑
(i,j)∈E fij), implying that µij = λj−1/(

∑
(i,j)∈E fij) = 0.

• Primal feasibility: This is satisfied by the definition of a flow in a market-network.

• Dual feasibility: We want to show that µij ≥ 0 for all i, j. For all i, j such that fij > 0,
we have λj = 1/(

∑
(i,j)∈E fij), implying that µij = λj − 1/(

∑
(i,j)∈E fij) = 0. For all i, j such

that fij = 0, let i′ be a source node such that fi′j > 0. Note that by Observation 8, we have∑
(i,j)∈E fij ≥

∑
(i,j)∈E fi′j . Therefore, we have,

µij = λj − 1/(
∑

(i,j)∈E

fij)

≥ λj − 1/(
∑

(i,j)∈E

fi′j)

= 0 as λj = 1/(
∑

(i,j)∈E

fi′j).
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Thus, Balance-allocation() can be implemented with one call to finding a lexicographically
optimum flow in the MPB graph. [Fuj80] give a fast algorithm to determine a lexicographically
optimum flow.

Lemma 19. [Fuj80] Given a digraph G = (V,E) with edge capacities, source set S+ and a sink t,
one can find a lexicographically optimum flow in O(|V | · |E| log(|V | · |E|)).

Lemma 19 immediately gives us an efficient algorithm to implement Balance-allocation().

Corollary 20. We can implement the subroutine Balance-allocation() in O(nm2 · log(nm)) time

Proof. Follows immediately from Lemma 19 after substituting |V | = n+m and |E| = nm and from
the fact that m > n.

We are ready to bound the running time of our algorithm.

Theorem 21. Given a chore division instance with rounded disutilities, we can determine a CEEI
in O(n2m2/α2 · log(nDmax) log(nm)) ∈ Õ(n2m2/α2) time.

Proof. By lemma 14, Algorithm 4 has a total of O(nm/α2 log(nDmax)) iterations, out of which
at most O(n/α2 log(nDmax)) involves invocation to Balance-allocation(). We now bound the total
time taken by our algorithm for all price updates and all allocation updates. Note that each price
update can be implemented in O(nm) as it mainly involves finding the agent i ∈ S and chore
j /∈ Γ(S) such that dij/(MPB i · pj) is minimum. Since there are at most O(nm/α2 log(nDmax))
iterations, the total time taken on all price update phases is O(n2m2/α2 log(nDmax)).

Now, we bound the total time taken on all allocation updates. First, look into all the allocation
update calls that involves a call to Balance-allocation(). Each such iteration can be implemented
in O(nm2 log(nm)) time by Corollary 20 and there are at most O(n/α2 log(nDmax)) such iter-
ations. Thus, the total time taken on all allocations that involve call to Balance-allocation() is
O(n2m2/α2 log(nDmax) log(nm)). Lastly, look at all allocation update phases that does not in-
volve call to Balance-allocation(). Each such phase can be implemented in O(nm) time as it
mainly involves allocating the chores in J to agents in S along MPB edges and there are at most
O(nm) MPB edges. Since there are at most O(nm/α2 log(nDmax)) many such iterations, the total
time spend on iterations that do not involve call to Balance-allocation() is O(n2m2/α2 log(nDmax)).
Overall, the total running time is O(n2m2/α2 · log(nDmax) log(nm)) ∈ Õ(n2m2/α2).

4.5 Modification of Algorithm 4 to get a FPTAS

We show how to extend the combinatorial algorithmic framework to get a (1−ε)-CEEI in O(n4m2 ·
log(nDmax)) time. With subtle changes, Algorithm 4 can be adapted to give a (1− ε)-CEEI, when
the disutility values are arbitrary. We make no changes to the price update phase. In the allocation
update phase, the only change we make is in initializing and updating the set S. In particular,
after each call to balance allocation, the set S is determined by the following procedure: Renumber
the agents according to increasing order of their earnings. Let i be such that ei/ei+1 is maximum.
Then S ← [i]. We run the algorithm as long as max i∈[n]ei/mini∈[n]ei ≥ 1 + ε. The analysis of
convergence is a little more involved.

Note that Observation 8, Lemma 9 and Observation 10 still hold as they only rely on the fact
that every time S is updated, we have max i∈Sei < mini/∈Sei, which is always true in the new
algorithm. We only need to argue about Lemma 11. This would require more work as we may
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not always have the multiplicative gap of 1 + α between max i∈Sei and mini/∈Sei. However, we
circumvent this problem by showing that between every consecutive calls to balance the product
of earnings increases by a multiplicative factor of 1 + ε2/256n2.

Consider the set of iterations (say iter1 ro iter r ) following the iteration involving a call to
Balance-allocation() until the next call to Balance-allocation(). Let e be the earning vector, p be
the price vector, and S = [i] (after renumbering the agents in increasing order of earnings) at the
beginning of iter1. Since we have e1/en ≥ 1 + ε, we have ei/ei+1 ≥ (1 + ε)1/n ≥ 1 + ε/2n. Also
note that emin/emax = mini∈Sei/max i∈Sei = ei/ei+1 ≥ 1 + ε/2n.

We now look into iter r. Let e′ be the earning vector, p′ be the price vector, and S′ be the set S
at the beginning of iter r. Note that S′ = S, as the set S has not changed (it only changes through
an invocation to Balance-allocation(), which has not happened from iter1 to iter r−1), while some of
the chores from the set [m] \Γ(S) in the earlier iterations got allocated along MPB edges to agents
in S. If e′min/e

′
max = mini∈Se

′
i/max i∈Se

′
i ≥ 1 + ε/4n, then by the same analysis in Lemma 11, we

can argue that the product of disutilities improve by a factor of 1 + ε2/256n2.
Now, we consider the case that e′min/e

′
max ≤ 1+ε/4n. In this case, we show that the ratio of the

product of disutilities at the beginning of iter r to that at the beginning of iter1 is 1 + ε2/16n2. Let
J denote the set of chores that were added to the set Γ(S) from iter1 to iter r−1. Let pj denote the
price of a chore j ∈ J in the iteration in which it was added to Γ(S) via MPB edges. Note that if a
chore j is added to Γ(S) via new MPB edges in iter `, the price of chore j remained unaltered from
iter1 to iter `, i.e., pj is the price of the chore in iter1 also. Let β denote the total multiplicative
decrease across all price-update phases from iter1 to iter r−1, i.e., β =

∏
`∈[r−1] γ`, where γ` is the

amount by which the prices of the chores in Γ(S) has been reduced in the price update phase of
iter `. Note for each i ∈ S, we have e′i ≥ β ·(ei+δi), where δi =

∑
j∈J x

′
ijpj where x′ is the allocation

at the end of iter r−1 (or equivalently, at the beginning of iter1): This is due to the fact that if z
units of chore j ∈ J is allocated to agent i in iter `, then the price of this fractional amount of chore
j gets scaled down by

∏
`+1≤q≤r−1 γq ≥ β until iter r−1 in the earning of agent i. Similarly, for each

i /∈ S, we have e′i = ei − δi where δi =
∑

j∈J xijpj where x is the allocation at iter1: This is due
to the fact that the only decrease in the earnings of the agents outside S comes from loosing the
consumption of the chores in J . Note that

∑
i∈S δi =

∑
i∈S
∑

j∈J x
′
ijpj =

∑
j∈J pj as by the end

of iter r−1 all chores in J are allocated to agents in S and similarly
∑

i/∈S
∑

j∈J xijpj =
∑

j∈J pj as
initially (at the beginning of iter1), all chores in J were allocated to agents in [n] \ S. Therefore,
we have

∑
i∈S δi =

∑
i/∈S δi.

Let i′ ∈ S be such that e′max = e′i′ and ĩ ∈ [n] \ S be such that e′min = e′
ĩ
. Similar to the proof

of Lemma 11, we give a lower-bound on ∆ =
∑

i∈[n] δi by giving a lower-bound on δi′ + δĩ. Since

we have e′min/e
′
max ≤ 1 + ε/4n, we can conclude that

emin − δĩ
β(emax + δi′)

≤ 1 +
ε

4n

=⇒ emin − δĩ ≤ β(emax + δi′) +
ε

4n
(β)(emax + δi′)

=⇒ βδi′ + δĩ ≥ emin − βemax −
ε

4n
(β(emax + δi′))

28



Since emin ≥ e′min ≥ e′max ≥ β(emax + δi′), we have ,

βδi′ + δĩ ≥ emin − βemax −
ε

4n
(emin)

=⇒ βδi′ + δĩ ≥ (1− ε

4n
)emin − βemax

=⇒ δi′ + δĩ ≥ (1− ε

4n
)emin − emax (as β < 1)

=⇒ δi′ + δĩ ≥ (1− ε

4n
)emin − (1 +

ε

2n
)−1emin (as emin ≥ (1 +

ε

2n
)emax )

=⇒ δi′ + δĩ ≥
(
(1− ε

4n
)− (1 +

ε

2n
)−1
)
emin

=⇒ δi′ + δĩ ≥
(

(1− ε
4n)(1 + ε

2n)− 1

1 + ε
2n

)
emin

=⇒ δi′ + δĩ ≥
ε

16n
· emin .

Therefore, ∆ ≥ (ε/16n) · emin . We are now ready to show that ratio of the product of disutilities
at the beginning of iter r to that at the beginning of iter1 is 1 + ε2/256n2. Let MPB i denote the
MPB value of agent i in iter1 and MPB ′i denote the MPB value of agent i in iter r−1. Note that
MPB ′i = (1/β) · MPB i for all i ∈ S and MPB ′i = MPB i for all i /∈ S. Therefore, we have the
product of disutilities in iter r−1 to that in iter1 as∏

i∈S MPB ′i ·
∏
i/∈S MPB ′i ·

∏
i∈[n] e

′
i∏

i∈S MPB i ·
∏
i/∈S MPB i ·

∏
i∈[n] ei

=
(1/β)|S| ·

∏
i∈[n] e

′
i∏

i∈[n] ei

≥
(1/β)|S| ·

∏
i∈S β(ei + δi) ·

∏
i/∈S(ei − δi)∏

i∈[n] ei

=

∏
i∈S(ei + δi) ·

∏
i/∈S(ei − δi)∏

i∈[n] ei

≥ (emax + ∆)(emin −∆)

emaxemin
(by Claim 12).

From here on, we can continue the same analysis as in the proof of Lemma 11 and get the desired
bound.

Therefore, there can be at most O(log1+ε2/256n2((nDmax)n)) ∈ O(n3 log(nDmax)/ε2) calls to
Balance-allocation(). Between any two consecutive calls to Balance-allocation(), we can have at
most O(m) iterations (as the size of Γ(S) strictly increases in each of these iterations). Therefore,
there are at most O(n3m log(nDmax)/ε2) many iterations that do not involve a call to Balance-
allocation(). Each call to Balance-allocation() can be implemented in O(nm(n+m)) time and each
iteration that does not involve a call to Balance-allocation() can be implemented in O(nm) time.

Therefore, the desired running time is O(n
3 log(nDmax)

ε2
·nm(n+m) log(nm) + n3m log(nDmax)

ε2
·nm) ∈

O(n4m2 log(nDmax) log(nm)/ε2).

Theorem 22. There exists a O((n4m2 log(nDmax) log(nm))/ε2) time combinatorial algorithm that
determines a (1− ε)-CEEI when agents have arbitrary disutility values.

Observe that if we do not stop our algorithm, until earning of all the agents are the same, then
we reach an exact CE. Since each balanced flow computation finds the Nash-welfare maximizing
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allocation for the given MPB configuration, it follows that the MPB configuration cannot repeat.
This together with Nash-welfare as the potential function puts the problem in PLS. This algorithm
and argument extends to the Fisher model as well, where agents may have different earning re-
quirements – if the earning requirement of agent i is ηi then in every iteration sort them in the
decreasing order of ei

ηi
.

Corollary 23. The problem of finding competitive equilibrium in the Fisher model is in PLS.

5 PPAD-Hardness for the Exchange Model

In this section, we show that finding (approximate) CE is intractable in the exchange model with
chores and linear valuations. It is well-known that under exchange model a CE may not exist, and
recently [CGMM22] showed existence under certain mild sufficiency conditions, namely conditions
SC1 and SC2 of Theorem 4. We show that even for the instances satisfying these conditions,
it is PPAD-hard to find a (1 − 1/poly(n))-approximate CE (Definition 3). In particular, we will
show that any polynomial time algorithm that determines a (1 − 1/poly(n))-approximate CE on
instances that satisfy conditions SC1 and SC2 of Theorem 4, will yield an algorithm to find a
1/n-approximate Nash equilibrium in a normalized polymatrix game. The latter is known to be
PPAD-hard [CPY17]. Next we recall the normalized polymatrix game problem:

Problem. (Normalized Polymatrix Game) [CPY17]
Given: A 2n × 2n rational matrix M with every entry in [0, 1] and Mi,2j−1 + Mi,2j = 1 for all
i ∈ [2n] and j ∈ [n] .
Find: An approximate Nash equilibrium strategy vector x ∈ R2n

≥0 such that x2i−1 + x2i = 1 and

xT ·M∗,2i−1 > xT ·M∗,2i + 1
n =⇒ x2i = 0.

xT ·M∗,2i > xT ·M∗,2i−1 + 1
n =⇒ x2i−1 = 0.

where M∗,k represents the kth column of the matrix M.

From the next section onward, we elaborate our construction and proof of reduction: We first
introduce all agents and chores. Thereafter, we define the disutility matrix and endowment matrix
and show that our instance satisfies the sufficiency conditions of Theorem 4, and therefore admits
a CE. Then, we show that our instance and the prices at (1− 1/poly(n))-approximate CE exhibits
the five properties of pairwise equal endowments, (approximate) fixed earning, (approximate) price
equality, price regulation and reverse ratio amplification (as discussed in Section 2.3), and thus in
polynomial-time we can construct the equilibrium strategy vector x for I from any (1 − 1

poly(n))-

approximate CE in E(I). The reader is highly encouraged to read Section 2.3 before reading the
elaborate version of the proof to get the idea of the overall proof sketch.

5.1 Agent and Chore Sets

We define the set of K = 2c · dlog(n)e many sets of chores, where c = 3 (observe crucially that K
is even),

Bk =
{
∪i∈[2n]b

k
i

}
for all k ∈ [K],
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and K many sets of agents

Ak =


{
a1
i | i ∈ [2n]

}
∪ {a′i | i ∈ [2n]} when k = 1,{

aki | i ∈ [2n]
}
∪
{
aki | i ∈ [n]

}
when 2 ≤ k ≤ K − 1,{

aKi,j | i, j ∈ [2n]
}
∪
{
aKi | i ∈ [n]

}
when k = K.

We remark that the sets A1, AK of agents and sets B1, BK of chores are to enforce the fixed
earning, price equality and price regulation properties as mentioned in sketch of the reduction in
Section 2.3, while the sets Ak of agents and Bk of chores for all 2 ≤ k ≤ K − 1 are to primarily
enforce reverse ratio amplification property as mentioned in Section 2.3. We now define the disutility
matrix and the endowment matrix of the instance.

Disutility Matrix and the Disutility Graph. The disutility graph for our instance will be a
disjoint union of complete bipartite graphs and the entries in our disutility matrix will be to enforce
price-regulation and reverse ratio-amplification properties. We now describe the disutility matrix:
We define only the disutility values in the matrix that are finite (the disutility of all agent-chore
pair not mentioned should be assumed to be ∞). For all k ∈ [K], for each pair of chores bk2i−1 and
bk2i, there are a set of agents that have finite disutility towards them and have infinite disutility
towards all other chores; Additionally, these agents also happen to be either in Ak or Ak−1 (indices
are modulo K). We now outline these agents and their disutilities for every k ∈ [K]. To define the
finite entries in the disutility matrix, we introduce the scalars 1

n3c = α1, α2, . . . , αK such that each
αi+1 = 3

2 · αi for all i ∈ [K − 1]. Before we define the disutility matrix, we make an obvious claim
about the scalars αi for all i ∈ [K], which will be useful later,

Claim 24. We have nc · α1 < αK ≤ 1
nc .

Proof. We first show the lower bound. We have αK = (3
2)K−1 · α1 = (3

2)2cdlog(n)e−1 · α1 > 2c log(n) ·
α1 = nc · α1. Similarly, for the upper bound, we have, αK = (3

2)K−1 · α1 = (3
2)2cdlog(n)e−1 · α1 <

22c log(n) · α1 = n2c · α1 = 1
nc (as α1 = 1

n3c ).

We now define the disutility matrix:

• k = 1: For each i ∈ [n], we first define the disutilities of the agents that have finite disutility
for chores b12i−1 and b12i. For each i ∈ [n] we have,

d(aKi′,2i−1, b
1
2i−1) = (1− α1) and d(aKi′,2i−1, b

1
2i) = (1 + α1) for all i′ ∈ [2n]

d(aKi′,2i, b
1
2i−1) = (1 + α1) and d(aKi′,2i, b

1
2i) = (1− α1) for all i′ ∈ [2n]

d(a′2i−1, b
1
2i−1) = (1− α1) and d(a′2i−1, b

1
2i) = (1 + α1)

d(a′2i, b
1
2i−1) = (1 + α1) and d(a′2i, b

1
2i) = (1− α1).

Therefore, for each i ∈ [n], we have a component D1
i in the disutility graph which is a complete

bipartite graph comprising of agents
{
aKi′,2i−1 | i′ ∈ [2n]

}⋃{
aKi′,2i | i′ ∈ [2n]

}⋃{
a′2i−1, a

′
2i

}
and chores

{
b12i−1, b

1
2i

}
(see Figure 2 (left subfigure) for an illustration).

• 2 ≤ k ≤ K: For each i ∈ [n] we have,

d(ak−1
2i−1, b

k
2i−1) = (1− αk) and d(ak−1

2i−1, b
k
2i) = (1 + αk)

d(ak−1
2i , bk2i−1) = (1 + αk) and d(ak−1

2i , bk2i) = (1− αk)
d(aki , b

k
2i−1) = (1− αk) and d(aki , b

k
2i) = (1− αk) .
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Therefore, for every k such that 2 ≤ k ≤ K, for each i ∈ [n], we have a connected com-
ponent Dki in the disutility graph which is a complete bipartite graph comprising of agents{
ak−1

2i−1, a
k−1
2i , aki

}
and chores

{
bk2i−1, b

k
2i

}
(see Figure 2 (right subfigure) for an illustration).

It is clear that the disutility graph is a disjoint union of complete bipartite graphs, namely, the
union of Dki for all i ∈ [n] and k ∈ [K]. Therefore,

E(I) satisfies condition SC2 of Theorem 4.

aK
1,(2i−1)

aK
n,(2i−1)

aK
1,(2i)

aK
n,(2i)

a′2i−1

a′2i

b12i−1

b12i

D1
i

ak−1
2i−1

ak−1
2i

aki

bk2i−1

bk2i

Dki

Figure 2: Illustration of the disutility graph corresponding to the disutility matrix: On the left,
we have the component D1

i , and on the right we have Dki when 2 ≤ k ≤ K. The edges are colored
in order to also encode the disutility matrix. The thin blue edges from agents to chores depict a
disutility of (1−α1) for D1

i (left), and (1−αk) for Dki when 2 ≤ k ≤ K (right). Similarly, the thick
blue edges from agents to chores depict a disutility of (1 + α1) for D1

i (left) and (1 + αk) for Dki
(right).

Endowment Matrix. All agents in Ak have endowments of chores only in Bk for all k ∈ [K]. We
only mention the non-zero agent-chore endowments (all agent-chore endowments, if not mentioned,
are zero).
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• k = 1: For each i ∈ [2n] we have,

w(a1
i , b

1
i ) = n.

Also, for each i ∈ [n] we have

w(a′2i−1, b
1
2i−1) = w(a′2i−1, b

1
2i) =

1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i−1)

w(a′2i, b
1
2i−1) = w(a′2i, b

1
2i) =

1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i).

• 2 ≤ k ≤ K − 1: For each i ∈ [n], we have,

w(ak2i−1, b
k
2i−1) = n and w(ak2i, b

k
2i) = n

w(aki , b
k
2i−1) = δk and w(aki , b

k
2i) = δk ,

where δk = n·αk
2 . The reason behind the exact choice of the value of δk will become explicit

when we show that our instance satisfies the reverse ratio amplification property in Section 5.2.
As of now, the reader is encouraged to think of it just as a small scalar.

• k = K: For each i ∈ [n] we have,

w(aK2i−1,j , b
K
2i−1) = M2i−1,j and w(aK2i,j , b

K
2i) = M2i,j for all j ∈ [2n]

w(aKi , b
K
2i−1) = δK and w(aKi , b

K
2i) = δK ,

where δK = n·αK
2 (the reason behind the choice of value will become explicit in Section 5.2).

Strongly Connected Economy Graph. We now show that the economy graph G of our in-
stance is strongly connected. For ease of explanation, we introduce the notion of economy graph of
components W = ([d], EW ), where there is an edge from i ∈ [d] to j ∈ [d], if and only if, there is an
agent a ∈ Di that has a positive endowment of some chore in b ∈ Dj . We now make a claim that
strong connectivity of W implies strong connectivity of the economy graph G.

Claim 25. If W is strongly connected then G is also strongly connected.

Proof. Consider any two agents a and a′. Let a ∈ Di and a′ ∈ Dj .19 Consider any chore b that
agent a has a positive endowment of and let Di′ be the component in the disutility graph that
contains b.20 Then since Di′ is a biclique in our instance, every agent in Di′ has finite disutility for
the chore b. Therefore, every agent in Di′ is reachable from a with an edge in the economy graph
G. Now, since W is strongly connected, there is a path `1 → `2 → · · · → `k from `1 = i′ to `k = j.
Let a`r be the agent in the component D`r , that has a positive endowment of some chore in the
component D`r+1 for all r ∈ [k − 1]. Again, since each D`r is a biclique, every agent in D`r has a
finite disutility for every chore in D`r . Thus, there is an edge in the economy graph G from a`r
to every agent in D`r , in particular there is an edge between a`r and a`r+1 in G. Thus, we have a
path a→ a`1 → · · · → a`k−1

→ a′ in G. Therefore, if W is strongly connected, then there is a path
between any two agents in G, implying that G is also strongly connected.

19Note that j could also be equal to i.
20Again, i′ could also be equal to i.
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D1
1 DK

1 DK−1
1

D2
1

D1
i DK

i DK−1
i

D2
i

D1
n DK

n DK−1
n D2

n

Figure 3: Illustration of the strong connectivity of the economy graph of components of our instance.
Observe that all nodes are reachable from any D1

i (i ∈ [n]). Also, from any arbitrary Dk′i′ , the node
D1
i′ is reachable and since every node is reachable from D1

i′ , every node is also reachable from Dk′i′
as well. Therefore, the economy graph of components is strongly connected.

From here on, we show that W is strongly connected. Observe that the disutility graph consists
of connected components Dki for k ∈ [K] and i ∈ [n]. Also observe that every component Dki in
the disutility graph comprises of exactly two chores bk2i−1 and bk2i. Therefore, to show that there

exists an edge from component Dk′i′ to Dki in W , it suffices to show that Dk′i′ contains agents that
own parts of chores bk2i−1 and bk2i. We now outline the edges in our exchange graph (see Figure 3):

• For all i ∈ [n], and 2 ≤ k ≤ K there is an edge in W from Dki to Dk−1
i : Dki contains the

agents ak−1
2i−1 and ak−1

2i that own parts of chores bk−1
2i−1 and bk−1

2i respectively (see Figure 3).

• For all i ∈ [n], there is an edge in W from D1
i to DK

j for all j ∈ [n]: Consider any j ∈ [n].

Observe that the component D1
i contains the agents aK2j−1,2i and aK2j,2i and the agents aK2j−1,2i

and aK2j,2i own parts of chores bK2j−1 and bK2j respectively (see Figure 3).

Observe that all nodes are reachable from any D1
i (i ∈ [n]). Also, from any arbitrary Dk′i′ , the

node D1
i′ is reachable and since every node is reachable from D1

i′ , every node is also reachable from
Dk′i′ as well. Therefore, the economy graph of components W , is strongly connected. Therefore, by
Claim 25 we have that,

E(I) satisfies the condition SC1 of Theorem 4.
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Thus, E(I) satisfies conditions of Theorem 4 and therefore admits a CE and thereby a (1− ε)-
approximate CE for any ε ≥ 0 (see Definition 3). Let p(bki ) denote the price of chore bki at an
(1− ε)-approximate CE for

ε =
α1

200 · n
<

1

n3c+1
⇒ ε = O(1/n10).

We now prove that our instance satisfies the required properties of pairwise equal endowments,
(approximate) price equality, (approximate) fixed earning, price regulation and reverse ratio ampli-
fication.

5.2 E(I) Satisfies All the Properties (Approximately)

Pairwise Equal Endowments. Here, we show that for all i ∈ [n] and for all k ∈ [K] the total
endowment of bk2i−1 equals the total endowment of bk2i and the total endowments of each chore in
E(I) is O(n).

Lemma 26. For all i ∈ [2n], the total endowments of chores bk2i−1 and bk2i is

1. n + n · (1 − αK), if k = 1. In particular, a′2i−1 and a′2i together, own n · (1 − αK) units of
chores bk2i−1 and bk2i each.

2. n+ δk, if 2 ≤ k ≤ K.

Proof. When k = 1, the only agents that have positive endowments of b12i are a1
2i (has an endowment

of n ) , a′2i (has an endowment of 1
2 · (1− αK) · (2n−

∑
j∈[2n] Mj,2i)) and a′2i−1(has an endowment

of 1
2 · (1− αK) · (2n−

∑
j∈[2n] Mj,2i−1)). Therefore, the total endowment of b12i from the agents a′2i

and a′2i−1 is

=
1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i) +
1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i−1)

=
1

2
· (1− αK) · (4n−

∑
j∈[2n]

(Mj,2i + Mj,2i−1)).

Recall that Mj,2i + Mj,2i−1 = 1. Therefore, the total endowment of b12i from the agents a′2i and
a′2i−1 is

=
1

2
· (1− αK) · (4n− 2n)

= (1− αK) · n.

Therefore, the total endowment of chore b12i is n+ n · (1− αK). A similar argument will show that
the total endowment of chore b12i−1 is also n+ n · (1− αK) and that agents a′2i−1 and a′2i together,
own n · (1− αK) units of it.

When 2 ≤ k ≤ K − 1, the only agents that have positive endowments of bk2i are ak2i (has an
endowment of n) and aki (has an endowment of δk). Therefore, the total endowment is n + δk. A
similar argument will show that the total endowment of chore bk2i−1 is also n+ δk.

When k = K, the only agents that have positive endowments of bK2i are the agents aK2i,j (has an

endowment of M2i,j) for all j ∈ [2n] and the agent aKi (has an endowment of δK). Therefore, the
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total endowment of chore bK2i is

=
∑
j∈[2n]

M2i,j + δK

=
∑
j∈[n]

(M2i,2j−1 + M2i,2j) + δK

=
∑
j∈[n]

1 + δK

= n+ δK

A similar argument will show that the total endowment of chore bK2i−1 is also n+ δK .

Price Equality. Here we will show that the sum of prices of chores bk2i−1 and bk2i are almost same
for all i ∈ [n] and k ∈ [K]. Let us define

πki = p(bk2i−1) + p(bk2i), ∀i ∈ [n], k ∈ [K] .

Here on we will use the properties of approximate CE (Definition 3). Recall that, at an (1− ε)-
approximate CE, we have (i) complete allocation each chore, (ii) every agent only consumes her
minimum pain-per-buck chores, and (iii) every agent i earns total price of her endowment up to
(1±ε) factor. And that, for two quantities x and y, by x = (1±ε)y we mean (1−ε)y ≤ x ≤ (1+ε)y.
In addition, now on

by x = (1± ε)dy we mean (1− ε)dy ≤ x ≤ (1 + ε)dy.

Lemma 27. For all i, i′ ∈ [n] and for all k, k′ ∈ [K], we have πk
′
i′ = (1±O(nε))πki .

Proof. Since ε < 1/n it suffices to show that πk
′
i′ = (1 + ±ε))O(n)πki . We show this in two steps:

First we show that for each i ∈ [n], we have π(k + 1)i = (1 ± ε)2πki for all k < K, implying that
πk
′
i = (1± ε))O(n)πki for all k, k′ ∈ [K].

Then we show that (1 − ε)2(
∑

j∈[n] π
K
j ) ≤ nπ1

i = (1 ± ε)2(
∑

j∈[n] π
K
j ) for all i ∈ [n]. This

together with the above imply that π1
i′ ≤ (1 ± ε))O(n)π1

i for all i, j ∈ [n]. Putting these together
proves the lemma.

We first show π(k+1)i ≤ (1±ε)2πki for all i ≤ n, k < K, wlog let i = 1. Observe that the agents

ak1, ak2, a
(k+1)
1 and chores b

(k+1)
1 , b

(k+1)
2 form the connected component D(k+1)

1 in the disutility graph.
That means these three agents earn all their money by consuming only these two chores, and no

one else consumes these chores. The total money supply of these two chores is (n+ δ(k+1))π
(k+1)
1 .

As per Definition 3, at (1 − ε)-approximate CE, an agents earn as much as the total price of

their endowments up to (1± ε) factor. Now since a
(k+1)
1 owns δ(k+1) units of both b

(k+1)
1 and b

(k+1)
2

only, her total cost is δ(k+1)π
(k+1)
1 . Total price of chores owned by agents ak1 and ak2 is nπk1 . At

equilibrium demand should be equals supply, implying that,

(1− ε)(δ(k+1)π
(k+1)
1 + nπk1 ) ≤ (n+ δ(k+1))π

(k+1)
1 ≤ (1 + ε)(δ(k+1)π

(k+1)
1 + nπk1 )

⇒ (1− ε)nπk1 − εδ(k+1)π
(k+1)
1 ≤ nπ(k+1)

1 ≤ (1 + ε)nπk1 + εδ(k+1)π
(k+1)
1

⇒ (1−ε)
(1+εδ(k+1)/n)π

k
1 ≤ π

(k+1)
1 ≤ (1+ε)

(1−εδ(k+1)/n)π
k
1

⇒ (1− ε)2πk1 ≤ π
(k+1)
1 ≤ (1 + ε)2πk1
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where the last implication follows from the fact that for ε < 1/n we have (1− ε) < 1
(1+εδ(k+1)/n)

and (1 + ε) < 1
(1−εδ(k+1)/n) .

We now show that nπ1
i = (1±)ε)2

∑
j∈[n] π

K
j : This time, we look into the connected component

D1
i of the disutility graph. We can claim that the agents {aKj,2i−1 | j ∈ [2n]}, {aKj,2i | j ∈ [2n]} and

the agents a′2i−1 and a′2i earn all of their money at an approximate CE from chores b12i−1 and b12i,
and these are the only agents who consume these two chores. Total money supply of these two
chores is (n+ n(1− αK))π1

i (by Lemma 26)
Observe that the total endowment of agents a′2i−1 and a′2i is n(1−αK) units of chores b12i−1 and

b12i only, and hence together they must earn n(1−αK)π1
i up to (1±ε). For agents {aKj,2i−1 | j ∈ [2n]}

and {aKj,2i | j ∈ [2n]}, recall that each aK`,`′ owns M`,`′ units of bK` . Therefore, together they need
to earn the following amount up to (1± ε) factor.∑

j∈[2n] Mj,2i · p(bKj ) +
∑

j∈[2n] Mj,2i−1 · p(bKj )

=
∑

j∈[2n](Mj,2i + Mj,2i−1) · p(bKj )

=
∑

j∈[2n] p(b
K
j ) (using Mj,2i−1 + Mj,2i = 1)

=
∑

j∈[n] π
K
j

Again, equating supply with demand we get,

(1− ε)(n(1− αK)π1
i +

∑
j∈[n] π

K
j ) ≤ (n+ n(1− αK))π1

i ≤ (1 + ε)(n(1− αK)π1
i +

∑
j∈[n] π

K
j )

⇒ (1− ε)
∑

j∈[n] π
K
j − ε(n(1− αK)π1

i ≤ nπ1
i ≤ (1 + ε)

∑
j∈[n] π

K
j + ε(n(1− αK)π1

i

⇒ (1−ε)
(1+ε(1−αK))

∑
j∈[n] π

K
j ≤ nπ1

i ≤
(1+ε)

(1−ε(1−αK))

∑
j∈[n] π

K
j

⇒ (1− ε)2
∑

j∈[n] π
K
j < nπ1

i < (1 + ε)2
∑

j∈[n] π
K
j

where the last implication follows from the fact that for ε, αK < 1/n we have (1−ε) < 1
(1+ε(1−αK))

and (1 + ε) > 1
(1−ε(1−αK)) .

(Approximately) Fixed Earning. Here, we show that in every CE, the earning of each agent
a′i for i ∈ [2n] is fixed up to (1 ± O(n)ε) factor. Note that (approximate) CE prices are scale
invariant.

Lemma 28. Let mini∈[n],k≤K π
i
k = 2. Then for all i ∈ [2n], we have that the earning of agent a′i is

(1± εO(n))(1− αK) · (2n−
∑

j∈[2n] Mj,i).

Proof. Let i = 2i′. Then agent a′2i′ owns 1
2 · (1 − αK) · (2n −

∑
j∈[2n] Mj,2i′) units of both chores

b12i′−1 and b12i′ . Since the earning of any agent at an (1 − ε)-approximate CE equals the sum of
prices of chores she owns up to (1± ε) factor, we have that the earning of agent 2i′ is

=
(1± ε)

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i′) · (p(b12i′−1) + p(b12i′))

=
(1± ε)

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i′) · π1
i′

=
(1± ε)

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i′) · 2(1±O(n)ε) (by Lemma 27).

= (1±O(n)ε)(1− αK) · (2n−
∑
j∈[2n]

Mj,2i′).
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Similarly, when i = 2i′ − 1 we can show that the total earning of agent a′2i′−1 is (1 − αK) · (2n −∑
j∈[2n] Mj,2i′−1). Thus the total earning of any agent a′i in a CE is (1 ± O(n)ε)(1 − αK) · (2n −∑
j∈[2n] Mj,i).

Price Regulation. Here, we show that for all k ∈ [K] and i ∈ [2n] the ratio of the prices of
chores bk2i−1 and bk2i is bounded.

Lemma 29. For all k ∈ [K] and for all i ∈ [n], we have 1−αk
1+αk

≤ p(bk2i−1)

p(bk2i)
≤ 1+αk

1−αk
.

Proof. We prove the lower bound ( 1−αk
1+αk

≤ p(bk2i−1)

p(bk2i)
) by contradiction. The proof for the upper

bound is symmetric. So assume that 1−αk
1+αk

>
p(bk2i−1)

p(bk2i)
. In that case, none of the agents in the

connected component Dki will do any part of chore bk2i−1 (as the disutility to price ratio of bk2i−1

will be strictly more than that of bk2i). Since all the other agents have a disutility of ∞ for bk2i−1, it
will remain unallocated. Therefore, the current prices for chores are not the prices corresponding
to a CE, which is a contradiction.

Reverse Ratio Amplification. Lastly, we show the property that when the price of chore bki is
at a limit, then the price of chore bk+1

i is at the opposite limit, i.e., when p(bki ) = 1 + αk, then we
have p(bk+1

i ) = 1− αk+1 and similarly when p(bki ) = 1− αk, then we have p(bk+1
i ) = 1 + αk+1.

Lemma 30. For all 1 ≤ k < K and i ∈ [n], we have that,

1. if
p(bk2i−1)

p(bk2i)
= 1−αk

1+αk
, then

p(bk+1
2i−1)

p(bk+1
2i )

=
1+αk+1

1−αk+1
, and

2. if
p(bk2i−1)

p(bk2i)
= 1+αk

1−αk
, then

p(bk+1
2i−1)

p(bk+1
2i )

=
1−αk+1

1+αk+1
.

Proof. We just show the proof of part 1. The proof for part 2 is symmetric. Let us assume

that
p(bk2i−1)

p(bk2i)
= 1−αk

1+αk
, and that p(bk2i−1) + p(bk2i) = 2 (using scale invariance of CE prices). Then,

p(bk2i−1) = 1−αk and p(bk2i) = 1+αk. From the proof of Lemma 27, we have that p(bk+1
2i−1)+p(bk+1

2i ) =

2(1 ± ε)2 and by Lemma 29 we have
1−αk+1

1+αk+1
≤ p(bk+1

2i−1)

p(bk+1
2i )

≤ 1+αk+1

1−αk+1
. Therefore, (1 − αk+1)(1 − ε)2 ≤

p(bk+1
2i−1), p(bk+1

2i ) ≤ (1 + αk+1)(1 + ε)2.

Observe that agent ak2i owns n units of chore bk2i and has finite disutility only for the chores bk+1
2i−1

and bk+1
2i (ak2i belongs in the connected component Dk+1

i ). Since at a (1− ε)-approximate CE, the
total earning of agent ak2i equals the sum of prices of chores she owns up to (1± ε) factor, we have
that ak2i earns (1± ε)n · p(bk2i) = (1± ε)n(1 +αk) amount of money from chores bk+1

2i−1 and bk+1
2i . We

claim that it suffices to show that ak2i earns some of her money from the chore bk+1
2i−1: This would

immediately imply that
d(ak2i,b

k+1
2i−1)

p(bk+1
2i−1)

≤ d(ak2i,b
k+1
2i )

p(bk+1
2i )

, further implying that
p(bk+1

2i−1)

p(bk+1
2i )

≥ 1+αk+1

1−αk+1
. However,

by Lemma 29, we have that
p(bk+1

2i−1)

p(bk+1
2i )

≤ 1+αk+1

1−αk+1
, and thus we can conclude that

p(bk+1
2i−1)

p(bk+1
2i )

=
1+αk+1

1−αk+1
.

For the rest of the proof, we show that ak2i earns positive amount of money from chore bk+1
2i−1. We

prove this by contradiction. So let us assume that ak2i earns all her money of at least (1−ε)n·(1+αk),
only from chore bk+1

2i . We will now show that the current prices of chores are not the prices
corresponding to a CE by distinguishing between two cases. Recall that δk = n

2αk for all k ∈ [K].
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• p(bk+1
2i ) > p(bk+1

2i−1): Observe that in this case, agent ak+1
i will also earn all of her money

from bk+1
2i only (as the disutility to price ratio of bk+1

2i is strictly smaller than that of bk+1
2i−1).

Therefore, we have that the total money agents ak2i and ak+1
i earn from bk+1

2i is,

≥ (1− ε)(πk+1
i δk+1 + n · (1 + αk))

≥ (1− ε)(2(1− 2ε)
n

2
αk+1 + n · (1 +

2

3
· αk+1)

(as δk+1 =
n

2
αk+1, αk+1 =

3

2
· αk, and πk+1

i ≥ 2(1− 2ε))

= (1− ε) · (n(1 + αk+1) + 2n
3 αk+1 − 2εnαk+1)

=
(1− ε)
(1 + 3ε)

(1 + 3ε)[(n+ n
2αk+1)(1 + αk+1)− n

2αk+1
2n
3 αk+1 − 2εnαk+1]

= (1− 4ε
(1+3ε))(1 + 3ε)[(n+ δk+1)(1 + αk+1)− n

2αk+1 + 2n
3 αk+1 − 2εnαk+1]

> (1 + 3ε)(n+ δk+1)(1 + αk+1) + (1 + 3ε)nαk+1

(
2
3 −

1+αk+1

2 − 2ε
)
− 4ε(4n)

(as [(n+ δk+1)(1 + αk+1)− n
2αk+1 + 2n

3 αk+1 − 2εnαk+1] < 4n)

> (1 + ε)2(n+ δk+1)(1 + αk+1) + n(αk+1(2/3− 1/2− 1/n)− 16ε)

> (1 + ε)2(n+ δk+1)(1 + αk+1) (as ε <
αk+1

192 )

However, total (money supply) price of bk+1
2i is at most (n + δk+1)p(bk+1

2i ) ≤ (n + δk+1)(1 +
ε)2(1 + αk+1) since it’s total endowment is n+ δk+1 by Lemma 26. This contradicts demand
equals supply for chore bk+1

2i .

• p(bk+1
2i ) ≤ p(bk+1

2i−1): In this case, p(bk+1
2i ) ≤ (1 + ε)2. Since the total endowment of bk+1

2i is

n + δk+1 by Lemma 26, the total (money supply) price of chore bk+1
2i is (1 + ε)2(n + δk+1).

Next we show that this is strictly less than the demand from agent ak2i. Agent ak2i owns n
units of bk2i and hence earns at least (1− ε)n(1 + αk) at (1− ε)-approximate CE.

(1− ε)n(1 + αk) =
(1− ε)
(1 + 3ε)

(1 + 3ε)n(1 +
2

3
αk+1)

= (1− 4ε
(1+3ε)(1 + 3ε)(n+

n

2
αk+1 +

n

6
αk+1)

> (1 + 3ε)(n+ δk+1) +
n

6
αk+1)− 4ε(2n)

> (1 + ε)2(n+ δk+1) (as ε <
αk+1

48
)

Since K is even, a repeated application of Lemma 30 will yield the following lemma,

Lemma 31. We have,

1. if
p(b12i−1)

p(b12i)
= 1−α1

1+α1
, then

p(bK2i−1)

p(bK2i)
= 1+αK

1−αK
, and

2. if
p(b12i−1)

p(b12i)
= 1+α1

1−α1
, then

p(bK2i−1)

p(bK2i)
= 1−αK

1+αK
.

Now that we have shown that our instance satisfies the desired properties of pairwise equal en-
dowments, (approximate) fixed earning, (approximate) price equality, price regulation and reverse
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ratio amplification, we are ready to outline how to determine the equilibrium strategy vector x for
the instance I of the polymatrix game, given the (1 − ε)-approximate CE prices of the instance
E(I) of chore division:

∀i ∈ [n], x2i−1 =
2p(bK2i−1)− (1− αK)πKi

2 · πKi · αK
x2i =

2p(bK2i)− (1− αK)πKi
2 · πKi · αK

It is clear that given the prices of chores at a CE, the equilibrium strategy vector can be obtained
in linear time. We will now show that x is the desired equilibrium strategy vector for instance I of
the polymatrix game.

Lemma 32. x = 〈x1, x2, . . . , x2n〉 is an equilibrium strategy vector for the polymatrix game instance
I.

Proof. First, observe that since πKi = p(bK2i−1) + p(bK2i) and our instance satisfies price regulation

(Lemma 29) we have that for all i ∈ [n], (1−αK)
πK
i
2 ≤ p(b

K
2i−1), p(bK2i) ≤ (1+αK)

πK
i
2 . Therefore, for

all i ∈ [2n] xi ≥ 0 . Furthermore, for all i ∈ [n] we have x2i−1 + x2i =
2p(bK2i−1)+p(bK2i)−2(1−αK)πK

i

2·πK
i ·αK

=

2πK
i αK

2πK
i αK

= 1.

Now we will show that if xT ·M∗,2i > xT ·M∗,2i−1 + 1
n , then x2i−1 = 0. The proof for the other

symmetric condition will be similar. So let us assume that xT ·M∗,2i > xT ·M∗,2i−1+ 1
n . Note that if

p(bK2i−1) = (1−αK)
πK
i
2 , then x2i−1 = 0. Hence, by Lemma 31 it suffices to show that

p(b12i−1)

p(b12i)
= 1+α1

1−α1
.

Wlog, assume that π1
i = p(b12i−1) + p(b12i) = 2, implying (1−α1) ≤ p(b12i−1), p(b12i) ≤ (1 +α1). Next

we will show that if
p(b12i−1)

p(b12i)
< 1+α1

1−α1
, then p(b12i) > (1 + α1), which is a contradiction. This will

complete the proof.
By Lemma 27 we have 2(1 − O(n)ε) ≤ πKi ≤ 2(1 + O(n)ε) for all i ∈ [n]. This implies,

p(bKi ) = (1 ± O(n)ε)(2xiαK + (1 − αK)) for all i ∈ [2n]. Observe that the agents that have a

disutility of 1 − α1 towards chore b12i are
{
aKj,2i | j ∈ [2n]

}
∪ a′2i. Observe that at the given prices

the sum of prices of chores owned by these agents is,

=
∑
j∈[2n]

Mj,2i · p(bKj ) + (1− αK) · (2n−
∑
j∈[2n]

Mj,2i) (by Lemma 28)

≥
∑
j∈[2n]

Mj,2i · (1−O(n)ε)(2αK · xj + (1− αK)) + (1− αK) · (2n−
∑
j∈[2n]

Mj,2i) (substituting p(bKj ))

= (1−O(n)ε)
∑
j∈[2n]

2αK · xj ·Mj,2i + (1− αK)(1−O(n)ε) ·
∑
j∈[2n]

Mj,2i + (1− αK) · (2n−
∑
j∈[2n]

Mj,2i)

≥ (1−O(n)ε)2αKx
T ·M∗,2i + 2n · (1− αK)− εO(n2).

Similarly, the total earning of the agents that have a disutility of 1 − α1 towards b12i−1 is at most
(1 +O(n)ε)2αKx

T ·M∗,2i−1 + 2n · (1−αK) + εO(n2). Observe that the agents with disutility 1−α1

towards b12i can earn all of their money only from the chores b12i or b12i−1 (as these are the only
chores towards which they have finite disutility). Also note that both chores b12i−1 and b12i have the

same total endowment which is n + n · (1 − αK) by Lemma 26(part 1). Now if,
p(b12i−1)

p(b12i)
< 1+α1

1−α1
,

then agents with disutility 1 − α1 towards b12i earn all of their money entirely from b12i (they earn
nothing from b12i−1). Since at (1− ε)-approximate CE they earn at least (1− ε) times price of their
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endowments, we have

p(b12i) ≥ (1− ε)2(1−O(n)ε)αKx
T ·M∗,2i+2n·(1−αK)−εO(n2)
n+n·(1−αK) (9)

Agents with disutility 1− α1 towards b12i−1 may earn from both b12i and b12i−1. Since they earn
at most (1 + ε) times price of their endowments, we have

p(b12i−1) ≤ (1 + ε)
2(1+O(n)ε)αKx

T ·M∗,2i−1+2n·(1−αK)+εO(n2)
n+n·(1−αK) (10)

Using the above two inequalities together with xT ·M∗,2i > xT ·M∗,2i−1 + 1
n we will next show

that p(b12i) > (1 + α1).

(n+ n · (1− αK))p(b12i) ≥ (1− ε)
[
2(1−O(n)ε)αKx

T ·M∗,2i + 2n · (1− αK)− εO(n2)
]

> (1− ε)
[
2(1−O(n)ε)αKx

T ·M∗,2i−1 + 2(1−O(n)ε)αK

n + 2n(1− αK)− εO(n2)
]

> (1− ε)(1−O(n)ε)2

[
(1− ε)(n+ n(1− αK))p(b12i−1)− 2n(1− αK)− εO(n2) +

2αK
n

+2n(1− αK)− εO(n2)

(1−O(n)ε)2

]
(Using (10) and 1

(1+x) > (1− x))

> (1− ε)2(1−O(n)ε)

[
(n+ n(1− αK))(1− α1) +

2αK
n
− εO(n2)(1 +O(n)ε)

]
(Using p(b12i−1) > (1− α1) and 1

(1−x) < (1 + 2x))

≥ (1−O(n)ε)
[
(n+ n(1− αK))(1− α1 +

αK
n2

]
+ (1−O(n)ε)

[αK
n
− εO(n2)(1 +O(n)ε)

]
> (1−O(n)ε)(n+ n(1− αK)(1− α1 + nα1) (as ε <

α1

4
≤ αK

4n3
)

≥ (n+ n(1− αK))(1 + α1) + (n+ n(1− αK))(1 + (n− 2)α1)

−O(n)ε(n+ n(1− αK)(1 + (n− 1)α1)

> (n+ n(1− αK))(1 + α1)

The above implies p(b12i) > (1 + α1) as aimed, which is a contradiction to p(b12i) ≤ (1 + α1).
Therefore, agents with (1− α1) disutility towards b12i must be consuming both b12i and b12i−1. This

is possible only if
p(b12i−1)

p(b12i)
= 1+α1

1−α1
, implying

p(bK2i−1)

p(bK2i)
= 1−αK

1+αK
by Lemma 31 and thereby p(bK2i−1) =

(1− αK)
πK
i
2 . Replacing this in the expression for x2i−1 we get,

x2i−1 =
2p(bK2i)− (1− αK)πKi

2 · πKi · αK

=
πKi (1− αK)− (1− αK)πKi

2 · αK
= 0.

A very similar argument will show that when xT ·M∗,2i−1 > xT ·M∗,2i + 1
n , then x2i = 0. Thus,

x = 〈x1, x2, . . . , xn〉 is a desired Nash equilibrium strategy vector for the polymatrix game I.

Note that, since ε = α1
200n , we have ε = 1

200n3c+1 = 1
poly(n) . Thus, this immediately implies the

main result of this section, where the sufficiency conditions to guarantee existence of CE are of
Theorem 4.
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Theorem 33. Finding (1 − 1
poly(n)) approximate CE for chore division in the exchange model is

PPAD-hard even for instances satisfying conditions SC1 and SC2 of Theorem 4.

Proof. We bring all the points together. Normalized polymatrix game is PPAD-hard [CPY17].
Given an instance I of the normalized polymatrix game, in polynomial time we can determine the
instance E(I). E(I) satisfies the sufficiency conditions SC1 and SC2 of Theorem 4 and therefore
admits an exact as well as approximate CE. Given the prices at a (1 − 1

poly(n))-approximate CE

of E(I), in polynomial time we can determine the equilibrium strategy vector for the polymatrix
game by Lemma 32. Therefore, chore division is PPAD-hard even on instances that satisfy SC1

and SC2 of Theorem 4 sufficient to guarantee existence of CE.
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Université de Paris, 1989.

[CPY17] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-monotone
markets. Journal of the ACM (JACM), 64(3):1–56, 2017.

[CSVY06] Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. Leontief
economies encode two-player zero-sum games. In Proc. 17th Symp. Discrete Algo-
rithms (SODA), pages 659–667, 2006.

[CT09] Xi Chen and Shang-Hua Teng. Spending is not easier than trading: On the compu-
tational equivalence of Fisher and Arrow-Debreu equilibria. In Proc. 20th Intl. Symp.
Algorithms and Computation (ISAAC), pages 647–656, 2009.

[DGM16] Ran Duan, Jugal Garg, and Kurt Mehlhorn. An improved combinatorial polynomial
algorithm for the linear Arrow-Debreu market. In Proc. 27th Symp. Discrete Algorithms
(SODA), pages 90–106, 2016.

[DGV16] Nikhil Devanur, Jugal Garg, and László Végh. A rational convex program for linear
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