
On the Existence of Competitive Equilibrium with Chores

Bhaskar Ray Chaudhury*

braycha@illinois.edu

Jugal Garg†

jugal@illinois.edu

Peter McGlaughlin ‡

mcglghl2@illinois.edu

Ruta Mehta§

rutameht@illinois.edu

Abstract

We study the chore division problem in the classic Arrow-Debreu exchange setting, where a set
of agents want to divide their divisible chores (bads) to minimize their disutilities (costs). We assume
that agents have linear disutility functions. Like the setting with goods, a division based on competitive
equilibrium is regarded as one of the best mechanisms for bads. Equilibrium existence for goods has been
extensively studied, resulting in a simple, polynomial-time verifiable, necessary and sufficient condition.
However, dividing bads has not received a similar extensive study even though it is as relevant as dividing
goods in day-to-day life.

In this paper, we show that the problem of checking whether an equilibrium exists in chore division
is NP-complete, which is in sharp contrast to the case of goods. Further, we derive a simple, polynomial-
time verifiable, sufficient condition for existence. Our fixed-point formulation to show existence makes
novel use of both Kakutani and Brouwer fixed-point theorems, the latter nested inside the former, to
avoid the undefined demand issue specific to bads.
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1 Introduction

Fair division has developed into a fundamental branch in mathematical economics, computational social
choice theory and computer science over the last several decades. In a classical fair division problem, the
goal is to divide a set of items among agents in a fair and efficient manner. Such problems have been
extensively studied when the items to be divided are all goods. The problem of dividing chores (items
creating disutility) has not received a similar extensive investigation even though it is as relevant as dividing
goods in day-to-day life; for instance division of daily household chores among tenants, teaching load
among faculty, job shifts among workers, and so on. A division based on competitive equilibrium (CE)
has emerged as one of the best mechanisms for this problem due to its remarkable fairness and efficiency
guarantees [Var74, BMSY17].

In this paper, we consider the problem of computing a CE with divisible chores in the fundamental
Arrow-Debreu exchange model. The exchange model is like a barter system, where each agent brings a
set of chores that needs to be completed and exchanges them with others to optimize their (dis)utility. For
example, a set of university students teaching each other in a group study, to optimize the time and effort
required. At a larger scale, timebanks1 are such reciprocal service exchange platforms which have around
30,000 to 40,000 users from the United States. In a timebank, individuals from a certain community give
services to one another and earn time credit. Thereafter, each individual uses their time credit to receive
services. CE provides a systematic way to do the exchange: it constitutes of prices (payment)2 for chores
and an allocation such that all chores are completely assigned and each agent gets her most preferred bundle
(optimal bundle) subject to her budget constraint3.

We assume that agents have linear disutility (cost) functions, i.e., the disutility of an agent is
∑

j dijXij ,
where dij is the disutility agent i gets from doing a unit amount of chore j, and Xij indicates the amount of
chore j that agent i does. Clearly, an agent can do a chore within a reasonable amount of time only if she
has the skill set required for it. For example, a professor trained in computer science (CS) can teach a CS
course in the upcoming semester, but may not have skill set to teach a course in music. This essentially boils
down to not allocating certain chores to certain agents. In the case of goods, this is achieved by specifying
zero utility values to some items, and its analogue for chores is specifying infinite disutility.

The existence of CE is well understood for goods. In particular, when agents have (quasi-)concave
utility functions, Arrow and Debreu [AD54], and Mckenzie [McK54, McK59] had shown the existence of
CE under some mild conditions. Both the theorems make use of Kakutani’s fixed point formulations. When
the utility functions are further restricted to be linear, there are well known convex programs that capture the
competitive equilibrium in the exchange model [NP83, Jai07, DGV16]. Such convex programs have been
instrumental in designing polynomial time algorithms for finding a competitive equilibrium when agents
have linear utility functions [Jai07, Ye08].

Interestingly, CE with chores behaves significantly differently than CE with goods. Bogomolnaia et
al. [BMSY17] considered the CEEI (CE with equal income) model, a special case of the exchange where
every agent owns one unit of every chore, with finite and homogeneous disutilities. They gave an involved
characterization of CE, and through this showed that with chores, the set of CE is non-convex and discon-
nected even when disutility functions are restricted to linear. While, in the case of linear CEEI model with
goods, there are even simpler convex programs [EG59, CDG+17] that capture CE.

In this paper, we analyze existence of CE with chores in the exchange model where agents may have
infinite disutility for certain chores. Although infinite disutilities seem natural, they create more challenges.
For example, we observe that CE in the CEEI model may not exist in contrast to guaranteed existence with
finite disutilities [BMSY17]. Furthermore, it is NP-hard to determine the existence in both exchange and

1https://timebanks.org/
2Equivalent of time credit in time banks.
3Here the budget constraint of an agent is that she has to earn enough to pay for her initial set of chores.
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CEEI. This is in sharp contrast to the goods case, where there is a polynomial time verifiable necessary
and sufficient condition for existence of CE in the exchange setting [Gal76, DGV16]. Our NP-hardness
result rules out the possibility of obtaining such conditions for chores case unless P=NP! Furthermore, we
strengthen our NP-hardness result to hold for 11/12-approximate CE.

The next best hope is to obtain weakest possible sufficient conditions that also capture interesting in-
stances, leading to our main question: Are there polynomial-time verifiable, natural, sufficient conditions
that guarantee the existence of a CE with chores?

Our result address the above question. First, we show the existence of a CE under two conditions. The
first condition, known as strong connectivity of the exchange graph, is an artifact of the exchange model,
and is required in the case of goods as well [Max97, VY11]. Intuitively, it ensures that no set of agents can
consume only a strict subset of the chores they cumulatively own, as otherwise no prices can ensure demand
equals supply. Our second condition depends on the disutility values. While this condition is specific to
only bads, it is simple, polynomial-time verifiable, and unavoidable (see Example 2).

The proof of existence of a CE under these two conditions makes use of Kakutani’s as well as Brouwer’s
fixed-point theorems, with the latter nested inside the former. The fixed point formulations for the goods
case define a correspondence (or equivalently a set valued function) on the simplex domain of prices [AD54,
SS75, Max97]. The correspondence maps each price vector to a set of price vectors in the simplex obtained
by adjusting the price of each good depending on its excess demand.4 Thereafter, by Kakutani’s fixed point
theorem the correspondence admits a fixed point, which is mapped to a CE by showing no excess demand
at a fixed-point.

With chores, the simplex domain of prices pose the issue of undefined optimal bundles of the agents: If
an agent owns chores that have positive prices but all the chores she can do (has finite disutility towards) have
zero prices, then there is no way she can earn the money needed for her endowment, thereby making her
optimal bundle undefined. We fix this issue by adding a set of linear constraints to our price domain, which
ensures that if the total prices of the chores an agent is interested in is zero, then her total endowment money
is also zero, implying that she does not need to earn anything and the doing-no-chores is an admissible
optimal bundle. However, such a fix makes it harder to define an appropriate correspondence: be mindful
that given a price vector, we need our correspondence to adjust prices depending on excess demand as
before, but now map it back to a more involved domain (earlier it was a simplex). Additionally, it should
satisfy the continuity-like property. It is unclear whether a correspondence with all the desired properties
exist. This is where we use Brouwer’s fixed point theorem to show the existence of such a correspondence.
An overview of this technique can be found in Section 1.2.1.

1.1 Model and Notations

A chore division problem consists of a set ofm divisible chores (bads), namelyB = {b1, . . . , bm}, and a set
of n agents A = {a1, . . . , an}. Each agent ai has d(ai, bj) ∈ (0,∞] disutility (pain) for doing unit amount
of chore bj .5 Here, infinite disutility implies that the agent does not have required skill set to do the chore
in a reasonable amount of time. If agent ai is assigned bundle Xi = 〈Xi1, . . . , Xim〉 ∈ Rm≥0 where Xij is
the amount of chore bj she gets, then her total disutility is di(Xi) =

∑
j∈[m] d(ai, bj) · Xij . We study the

problem under exchange model, where agent ai brings w(ai, bj) amount of chore bj to be done (by herself
or other agents).

Given prices p = 〈p(b1), p(b2), . . . , p(bm)〉 ∈ Rm≥0 for chores, where p(bj) denotes the payment for
doing unit amount of chore bj , agent ai needs to earn

∑
j∈[m]w(ai, bj) · p(bj) in order to pay to get her own

4At any given price, an agent can be content with several allocations, i.e., there are multiple optimal bundles at a given price. As
different optimal bundles can lead to different excess demands for the goods, such a correspondence maps a price vector to several
price vectors in the simplex.

5If d(ai, bj) is zero, then chore bj can be safely assigned to agent ai and can be removed from the instance.
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chores done. In this light, we define the feasible set of bundles Fi(p) as those bundles with which an agent
can earn her required money, i.e., Fi(p) =

{
Xi ∈ Rm≥0 |

∑
j∈[m]Xij · p(bj) ≥

∑
j∈[m]w(ai, bj) · p(bj)

}
.

Clearly ai would like to choose the feasible bundle that minimizes her disutility – this defines her optimal
bundle (or optimal chore set).

OB i(p) = arg min
Xi∈Fi(p)

di(Xi). (1)

It is easy to see that in her optimal bundle agent ai gets assigned only those chores that minimizes her
disutility per dollar earned and agent i earns money exactly equal to the total price of her endowments.
Formally, if Xi ∈ OB i(p), then,

∀j ∈ [m], Xij > 0 ⇒ d(ai,bj)
p(bj)

≤ d(ai,bj′ )

p(bj′ )
∀j′ ∈ [m],

and ∑
j∈[m]

Xij · p(bj) =
∑
j∈[m]

w(ai, bj) · p(bj).

In the above ratios, to deal with zero prices and infinite disutilities we assume ∞/a > b/0 for any
a, b ∈ [0,∞). Clearly, an optimal bundle of an agent contains only those chores for which she has finite
disutility.

Price vector p is said to be at a Competitive Equilibrium (CE) if all chores are completely assigned when
every agent gets one of her optimal bundles, i.e., Xi ∈ OB i(p) and

∑
i∈[n]Xij =

∑
i∈[n]w(ai, bj), ∀j ∈

[m]. It is without loss of generality to assume that each chore is available in one unit total, i.e. for each
bj ∈ B,

∑
i∈[n]w(ai, bj) = 1 (through appropriate scaling of the disutility values). We now formally

describe our problem.

Definition 1 (Chore Division in the Exchange Model). Given a set of agents A = {a1, a2, . . . , an}, chores
B = {b1, b2, . . . , bm}, disutilities d(·, ·) and endowments w(·, ·), our goal is to find a price vector p =
〈p(b1), p(b2), . . . , p(bm)〉 ∈ Rm≥0 and allocation X = 〈X1, X2, . . . , Xn〉, such that

• Every agent gets their optimal bundle: Xi ∈ OB i(p).

• All chores are completely allocated:
∑

i∈[n]Xij =
∑

i∈[n]w(ai, bj) = 1, for all bj ∈ B.

Observe that the equilibrium prices are scale invariant: if p is an equilibrium price vector then so is α · p
for any positive scalar α. Furthermore, at equilibrium p(bj) > 0 for each chore j, otherwise no agent would
be willing to do it. A CE 〈p,X〉 has many desirable properties like envy-freeness and Pareto optimality in
the chore division with equal income [BMSY17]. Similarly, CE for the exchange model too satisfies Pareto
optimality and weighted envy-freeness6.

Fisher Model and CEEI. The Fisher model is a special case of exchange model, where instead of the
endowment of chores, each agent ai has a requirement of earning a fixed amount of money e(ai) ≥ 0,
i.e., the only change is in the definition of the feasible set of chores that can be allocated to an agent at
a given price vector p, Fi(p) =

{
Xi ∈ Rm≥0 |

∑
j∈[m]Xij · p(bj) ≥ e(ai)

}
. If e(ai) = 1 for all ai ∈ A

then resulting equilibrium is called Competitive Equilibrium with Equal Income (CEEI). Clearly, CEEI is
a special case of Fisher. Observe that determining CE in the Fisher model, can be modeled as determining
CE in the exchange model, by setting w(ai, bj) = e(ai) for each ai ∈ A and bj ∈ B, while keeping the
disutility values as is.

6Weight of an agent at given prices is the total monetary cost of the chores she brings. Naturally, higher the cost of her chores
(more money she has to earn), larger is her share of disutility.
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1.2 Overview of Our Results and Techniques

In this section we discuss the high-level ideas and techniques used to prove our main results. We first note
that in general, a chore division instance may not admit a CE as demonstrated by the following example.

Example 1. There are two agents a1 and a2, and two chores b1 and b2. We have w(ai, bj) = 1 for all
i, j ∈ [2], and d(a1, b1) = d(a2, b1) = 1, and d(a1, b2) =∞ and d(a2, b2) = 2. Let p(b1) and p(b2) be the
prices of the chores at a CE.

Observe that since d(a1, b2) =∞, a1 earns her entire money of w(a1, b1) ·p(b1)+w(a1, b2) ·p(b2) from
b1. Therefore, at a CE, the total price of the chore b1 is at least the total money earned by a1: (w(a1, b1) +
w(a2, b1)) · p(b1) ≥ (w(a1, b1) · p(b1) + w(a1, b2) · p(b2)). This implies that 2 · p(b1) ≥ p(b1) + p(b2),
further implying that p(b1) ≥ p(b2). In that case observe that the disutility to price ratio of b2 is strictly less
than that of b1 for a2: d(a2, b1)/p(b1) = 1/p(b1) < 2/p(b1) ≤ 2/p(b2) = d(a2, b2)/p(b2). Thus, none of
the agents are willing to do chore b2, and therefore it remains unassigned, a contradiction.

It is well known that the a CE may not exist while dividing goods as well under the exchange model.
And, there are polynomial time checkable necessary and sufficient conditions for the existence of CE. The
next natural question is to obtain similar conditions for the chore division as well. However, in Section 3 we
prove the following theorem.

Theorem 1. Determining whether an instance of chore division in the Fisher model admits a CE is strongly
NP-hard, even for the case of equal incomes (CEEI). This also holds for the constant-approximate CE.

The above theorem rules out obtaining polynomial time checkable necessary and sufficient conditions
for existence of a CE unless P=NP.7 The next best hope is to design weakest possible conditions that ensures
a CE and captures an interesting class of instances. Towards this we derive two conditions.

The first condition is an artifact of the exchange setting, and is required for dividing goods as well [Max97]:
if a set of agents are interested to consume only a strict subset of the endowment that they cumulatively own,
then no prices can ensure demand equals supply (we elaborate this shortly in Example 3). We now define a
condition that helps us resolve this issue.8 To define the condition, we first define the economy graph of a
given instance of chore division.

Definition 2 (Economy Graph [Max97]). Given an instance I = 〈A,B, d(·, ·), w(·, ·)〉, an Economy Graph
G = (A,E) is a graph, with vertices corresponding to the agents and there exists an edge from ai to aj if
and only if there exist a chore c ∈ B, such that w(ai, c) > 0 and d(aj , c) 6=∞.

Now we define the first condition.

Definition 3 (Condition 1 [Max97]). The economy graph of the instance is strongly connected.

Observe that our instance in Example 1 does satisfy Condition 1, yet does not admit a CE. The primary
reason for non-existence of CE in Example 1 is that sets {b ∈ B | d(a1, b) 6=∞} and {b ∈ B | d(a2, b) 6=
∞} are neither same nor disjoint. Next by generalizing this example we demonstrate that unless finite
disutility chore sets of any two agents are either same or disjoint, the equilibrium may not exist. In particular,
given any integer n > 1 and m > 1, we create a chore division instance with n agents and m chores that
satisfies Condition 1, has exactly one agent-chore pair with infinite disutility, and does not admit a CE.

7In turn there is no unique condition that ensures existence of CE.
8In fact, Condition 1 is the analogue of the necessary and sufficient condition required for a CE to exist in exchange markets

with goods.
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Example 2. There are n agents a1, a2, . . . , an, and m chores b1, b2, . . . , bm. We set w(ai, bj) = 1 for all
i ∈ [n] and j ∈ [m]. So there is a total of n units of each chore bj , for all j ∈ [m]. Now, we set d(ai, bj) = 1
for all i ∈ [n] and j ∈ [m− 1]. We set d(ai, bm) = nm for all i ∈ [n− 1] and d(an, bm) =∞.

Since w(ai, bj) = 1, for all i ∈ [n] and j ∈ [m], the instance in Example 2 does satisfy Condition 1
(the economy graph of the instance is a clique). Observe that since all the agents have the same disutility
for the chores ∪j∈[m−1]bj , the prices of all these chores will be the same at a CE (otherwise some of the
chores will remain unassigned). Therefore, let p be the price of a chore bj for j ∈ [m − 1], and p′ be
the price of the chore bm at a CE. Since an has infinite disutility for bm, she will earn her entire money of∑

j∈[m]w(an, bj) ·p(bj) = (m−1) ·p+p′ from the chores in ∪j∈[m−1]bj . Therefore, at a CE, the total price
of the chores in ∪j∈[m−1]bj is at least the total money earned by an, i.e., total prices of the chores owned
by agent an, implying that

∑
j∈[m−1]

∑
i∈[n]w(ai, bj) · p(bj) ≥

∑
j∈[m]w(an, bj) · p(bj). This implies

that (m − 1) · n · p ≥ (m − 1) · p + p′, further implying that (m − 1) · (n − 1) · p ≥ p′. In that case
observe that the disutility to price ratio of bm is strictly less than that of b1 for any agent ai, for i ∈ [n− 1]:
d(ai, b1)/p(b1) = 1/p ≤ ((n− 1) · (m− 1))/p′ < nm/p′ = d(ai, bm)/p(bm). Thus, none of the agents
are willing to do chore bm, and it remains unassigned, a contradiction.

Our next condition is to circumvent the primary issue in Example 2 that renders CE to not exist. To this
end, we define the disutility graph D = (A ∪B,ED) as the bipartite graph with the set of agents A and the
set of chores B forming the vertex sets on two sides and there is an edge from an a ∈ A to a b ∈ B when
d(a, b) 6=∞. Examples 1 and 2 demonstrate that whenever there is a connected component D′ of D which
is not a biclique, there exists disutility values for which the instance will not admit a CE. This brings us to
our second condition.

Definition 4 (Condition 2). The disutility graph is a disjoint union of bicliques.

The second main result of our paper shows that Conditions 1 and 2 guarantee the existence of a CE.

Theorem 2. A chore division instance satisfying Conditions 1 and 2 admits a CE.

We now quickly show that even if one of the two conditions is not satisfied, the instance may not admit
a CE. Examples 1 and 2 already outline instances that satisfy Condition 1, but do not satisfy Condition 2
and as a result do not admit a CE. We next give an example that satisfies Condition 2, but not Condition 1,
and does not admit a CE.

Example 3. There are three agents a1, a2, a3 and three chores b1, b2, b3. Agents a1 and a2 own 1/2
units of chores b1 and b2 each, i.e., w(ai, bj) = 1/2 for all i, j ∈ [2]. Agent a3 owns one unit of b3, i.e.,
w(a3, b3) = 1. We set d(a1, b1) = d(a2, b1) = 1, and d(a3, b2) = d(a3, b3) = 1. The disutility value of all
other agent chore pair is infinity.

Observe that the disutility graph is a disjoint union of bicliques – one biclique comprising of agents a1,
a2 and the chore b1, and the second biclique comprising of the agent a3 and chores b2 and b3. Therefore
the instance satisfies Condition 2. We now show that the instance does not admit a CE. Let p(b1), p(b2) and
p(b3) denote the prices of chores b1, b2 and b3 at a CE. Since agents a1 and a2 earn their entire endowment
money from the chore a1, we have that

∑
i∈[2]

∑
j∈[3]w(ai, bj) · p(bj) =

∑
i∈[3]w(ai, b1) · p(b1), implying

that p(b1)+p(b2) = p(b1), further implying that p(b2) = 0. Therefore, at any CE b2 will remain unassigned
as it will not be a part of the optimal bundle set of the agent a2 when p(b2) = 0, which is contradiction.

In the subsections that follow, we briefly elaborate our techniques and novel ideas used to prove Theo-
rem 2.
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1.2.1 Existence of a CE under the Sufficient Condition

In this section, we sketch the approach and main ideas to show existence of a CE assuming the instance
satisfies two sufficient conditions, that is proof of Theorem 2 (see Section 2 for the details). Most equilibrium
existence results [Nas51, AD54] are based on either Brouwer’s or Kakutani’s fixed-point theorems. The
Brouwer’s (Kakutani’s) fixed-point theorem says that given a function (correspondence) φ from D to itself,
there exists an x ∈ D such that f(x) = x (x ∈ f(x)), if f is continuous (has closed graph) and D is convex
and compact [Bro11, Kak41]. Our proof invokes both Brouwer’s and Kakutani’s fixed-point theorems, the
former nested inside the latter. This approach may be of independent interest to prove existence in other
settings.

We first briefly discuss why existence proofs for determining a CE with goods do not easily extend to
chores, and this will eventually lead us to the new approach. Most existence proofs for a CE with goods
define a fixed-point formulation on the domain of prices that forms a simplex [AD54, Max97], i.e., if there
are m goods, then the domain is the simplex ∆m = {p ∈ Rm≥0 |

∑m
j=1 pj = 1}. Given the prices, it

computes the optimal bundles of agents and adjusts prices based on excess demand. At a fixed-point, no
change in prices will imply no excess demand, leading to a CE.

This approach immediately fails for the chore division problem due to the issue of infeasible optimal
bundle: Given a price vector from the simplex domain, if agent ai’s chore endowment has positive total
monetary cost, while the chores she is able to do have zero prices, then there is no way she can earn enough
money to pay for her chores, in turn making the set Fi(p) in (1) empty. The reason why this issue does not
arise in case of goods is that, there, agents are allowed to spend at most the total price of their endowments
(for bads it is at least), thereby reversing the inequality in the definition of the set Fi(p), which ensures that
the all zero vector in Rm≥0 is always a feasible vector.

To circumvent the above issue, first we need to work with a more involved price domain that ensures
that total monetary cost of the chores and endowments is the same inside every component of the disutility
graph. Recall the bipartite disutility graph D = (A ∪ B,ED) where there is an edge (a, b) ∈ ED if and
only if d(a, b) 6=∞. Let D1 = (A1 ∪B1, ED1), D2 = (A2 ∪B2, ED2), . . . , Dd = (Ad ∪Bd, EDd) be the
connected components of D. Then, our new price domain is,

P =

p ∈ Rm≥0 |
∑
j∈[m]

p(bj) = 1 and
∑
b∈Bk

p(b) =
∑
a∈Ak

∑
j∈[m]

w(a, bj)p(bj) ∀k ∈ [d]

 (2)

Now observe that if for any agent a ∈ Ak, for some k ∈ [d], the chores she is interested in (the set
Bk), have zero prices, then the total price of her endowment is also zero as p ∈ P. In this case, agent a
need not earn anything. As a result, she does not need to do any chore and the all zero vector in Rm≥0 is a
feasible optimal chore set for agent a. Therefore, for any price vector p ∈ P, for any agent i, we have that
the set Fi(p) is not empty and neither is the optimal bundle set in (1). However, there is still an issue with
zero prices, a different one: It can be the case that for some component (Ak ∪Bk, Ek), the prices of all the
chores in Bk are zero, and prices of all the chores that agents in Ak bring are also zero. In that case, the
optimal bundle of any agent a ∈ Ak consists of only the all zero vector because none of them have to earn
anything! However, this will make the optimal bundle set change non-continuously with respect to prices,
which is a major roadblock in proving continuity like property (the closed graph property) for the fixed-point
formulation: for instance consider a simple scenario where there is a component Dk in the disutility graph
comprising of just one agent a and one chore b. Agent a has some positive endowment of only one chore
b′ 6= b, say w(a, b′) = 1 and w(a, j) = 0 for all other j ∈ B. Now, consider a sequence of price-vectors
(pn)n∈N in P, such that pn(b′) = pn(b) = 1/n. Observe that for every n ∈ N, the optimal bundle of agent
a is Xab = 1 and Xat = 0 for all other t ∈ B, as the only chore a is interested in is b, and she has to do
one unit of b, to earn her money of w(a, b) · p(b′) = 1 · (1/n) = 1/n. However, at the limit of the sequence
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(pn)n∈N, say p∗, we have p∗(b) = p∗(b
′) = 0 and the only unique optimal bundle for agent a is the all zero

vector in Rm≥0. Thus, the optimal bundle may not change continuously with the price-vectors in P.
To fix the above issue, we define the extended optimal bundle set, which is same as the optimal bundle

set of an agent ai ∈ Ak, if the total price of the chores in Bk is strictly positive, otherwise it is the set
of all feasible allocations of chores in Bk. This will help us ensure continuity of the final correspondence.
However, we will have to make sure that at the fixed-point, the extended optimal bundle is the optimal
bundle for every agent (one way to do this is to ensure that there are no zero prices at the fixed point). For
the allocations, we will work with the following domain: for some sufficiently large constant C, we define

X = {X ∈ Rmn≥0 | 0 ≤ Xij ≤ C, ∀ai ∈ A,∀bj ∈ B} (3)

Then the set of extended optimal bundles of an agent ai ∈ Ak is:

EOB i(p) =

{
{Xi ∈ X | Xij > 0 only if d(ai, bj) 6=∞} if

∑
b∈Bk p(b) = 0,

OB i(p) otherwise.
(4)

Fixed-point formulation. The domain of our fixed point formulation is S = P × X. Next, we define a
correspondence φ : S → 2S that is product of two correspondences φ1 : S → 2P and φ2 : S → 2X. For a
given (p,X) ∈ S, φ(p,X) = φ1(p,X) × φ2(p,X). Out of these, φ2(p,X) is the set of extended optimal
bundles at prices p. Formally,

φ2(p,X) = {X ∈ X | Xi ∈ EOB i(p), ∀ai ∈ A}

The exact formulation of φ1 is involved and requires to invoke Brouwer’s fixed-point theorem. There-
fore, let us first state the properties of φ1 that we need to ensure, and discuss how they help us map
fixed-points of φ to the competitive equilibria of the chore division instance. For a given (p,X) ∈ S, if
p′ ∈ φ1(p,X), then it must be that

• p′ ∈ P and for all components Dk = (Ak ∪ Bk, Ek) of the disutility graph, and chores bj and bj′ in
Bk, where p(bj′) > 0, we have

p′(bj)

p′(bj′)
=

p(bj) + max (
∑

i∈[n]w(ai, bj)−
∑

i∈[n]Xij , 0)

p(bj′) + max (
∑

i∈[n]w(ai, bj′)−
∑

i∈[n]Xij′ , 0)
. (5)

Fixed-points to CE. Let (p,X) be a fixed-point of φ, i.e., (p,X) ∈ φ(p,X). We first show that at any fixed-
point, the prices of all the chores are strictly positive. To the contrary, suppose p(bj) = 0 for some bj ∈ B,
and let bj belong to componentDk = (Ak∪Bk, EDk) of the disutility graphD. Then, some component ofD
has chores with both zero and positive prices. Either it isDk itself, or if all the chores inDk have zero prices,
then using the fact that p ∈ P, we have

∑
ai∈Ak

∑
j∈[m]w(ai, bj) ·p(bj) =

∑
bj∈Bk p(bj) = 0. This implies

that the prices of all the chores owned by agents in Dk are zero, and some of them must belong to other
components due to the strong connectivity of the economy graph (Condition 1). Recursing this argument,
and also using the fact that sum of all the prices is 1, there must be a component with a zero priced chore,
but the sum of prices of the chores in the component is positive, say component D` = (A` ∪B`, ED`).

Let b0 and b+ be the chores in D` with p(b0) = 0 and p(b+) > 0. For every agent in ai ∈ A`, their
EOB i(p) = OB i(p), since total price of the chores in B` is positive (by (4)). Since every ai ∈ D` has finite
disutility for both b0 and b+ (due to Condition 2), her disutility-per-buck for b0 is strictly more than that for
b1. Due to (1), if Xi ∈ OBi(p) then Xib0 = 0 for all i ∈ A`. Furthermore, every agent a /∈ A` has infinite
disutility for b0, we have that Xib0 = 0 for all i ∈ [n]. Now given that our correspondence φ satisfies (5),
and p(b0) = 0 and p(b+) > 0, we have,
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0 =
p(b0)

p(b+)
=

p(b0) + max (
∑

i∈[n]w(ai, b
0)−

∑
i∈[n]Xib0 , 0)

p(b+) + max (
∑

i∈[n]w(ai, b+)−
∑

i∈[n]Xib+ , 0)

=
0 +

∑
i∈[n]w(ai, b

0)

p(b+) + max (
∑

i∈[n]w(ai, b+)−
∑

i∈[n]Xib+ , 0)

> 0, a contradiction.

Therefore, at a fixed point, there is no chore with a zero price. Now, we briefly describe why fixed-point
(p,X) correspond to the prices and allocation at a CE. Let rj(X) denote the amount of the chore bj left
undone under X , i.e.,

rj(X) = max (
∑
i∈[n]

w(ai, bj)−
∑
i∈[n]

Xij , 0).

Since all chores have positive price at p, extended optimal bundle set of every agent is her optimal bundle
set (by (4)) and thereby X ∈ φX(p,X) ensures that Xi ∈ OBi(p) for every agent ai ∈ A. Now we only
need to ensure demand meets supply for every chore. If not, then some chore bj in component Dk, which
is not completed, i.e., rj(X) > 0. Since p ∈ P, we have that the cumulative price of the endowments
of the agents in a component of the disutility graph equals the total price of the chores in the same com-
ponent. Since every agent spends on their optimal bundle, the cumulative price of the endowments of the
agents equals the total earning of that agents in Ak from Bk. Therefore, if one chore bj is underdone, i.e.,
rj(X) > 0, then there exists some other chore bj′ , which is overdone, i.e., rj′(X) = 0. Again using (5), we
have p(bj)

p(bj′ )
=

p(bj)+rj(X)
p(bj′ )+rj′ (X) >

p(bj)
p(bj′ )+rj′ (X) =

p(bj)
p(bj′ )

, a contradiction.

Mapping to P and Ensuring Condition (5). Our next task is to define the correspondence φ1, so that for any
given (p,X) ∈ S, (5) holds for every p′ ∈ φ1(p,X), and p′ ∈ P. This in fact is the trickiest part of our
proof and constitutes the main bulk of our efforts.

To get p′ ∈ P, we need to make sure that the p′ ∈ ∆m, and for every component Dk of the disutility
graph D, total prices of the chores in Dk equals total cost of endowments of agents in Dk. To this end, for
every chore bj in component Dk, let q(bj) = p(bj) + rj(X), where rj(X) is the non-negative excess supply
as defined above, and βj =

q(bj)∑
b∈Dk

q(b) . Note that for (5), we want that for any bj , bj′ ∈ Dk with p(bj′) > 0,
p′(bj)
p′(bj′ )

=
q(bj)
q(bj′ )

=
βj
βj′

. Thus, if p̃k =
∑

b∈Dk p
′(b) then p′(bj) must be βj p̃k. This reduces to one unknown

per component of D, namely p̃k for each k ∈ [d].
Next, we write a system of linear equations to compute p̃k’s such that all the constraints of domain P

are satisfied. The simplex constraints for the prices in P can be encoded by ensuring p̃ ∈ ∆d. Next, for each
component Dk, the following constraint imposes total endowment costs of agents in Dk equals total prices
of chores in Dk. ∑

ai∈Ak

∑
k′∈[d]

∑
bj′∈Bk′

w(ai, bj′) · (βj′ p̃k′) =
∑
bj∈Bk

(βj p̃k)

Let M(β) ∈ Rd×d denote the matrix of this linear system. Then, our goal becomes to find a vector
v ∈ ∆d, in the null space ofM(β). It is not obvious why such a vector should exist. Our high-level approach
to show the same is as follows: We can equivalently express the linear system of equations M(β) · v = 0
as M ′(β) · v = v, where M ′(β) = M(β) + I , where I is the identity matrix. We show that if we define
a function f : Rd → Rd as f(v) = M ′(β) · v, then f maps the d-dimensional simplex ∆d to itself (this is
non-trivial). Restricting f to only the simplex, we get a continuous map f : ∆d → ∆d and therefore it has
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a fixed-point by the Brouwer’s fixed-point theorem. At every fixed-point v we have M ′(β) · v = v implying
M(β) · v = 0. Since v ∈ ∆d we get the vector we needed.

The above scheme will work if the βjs are well defined. However, for a component Dk if
∑

b∈Dk q(b)
turns out to be zero, then βjs are ill-defined and cause issues with proving continuity like properties of φ.
To handle this, we define a set of permissible βs, namely,

B =

{
β ∈ Rm≥0 | ∀k ∈ [d],

∑
bj∈Dk βj = 1 if

∑
b∈Dk t(b) = 0

∀bj ∈ Dk, βj =
q(bj)∑
b∈Dk

q(b) otherwise

}
.

And for each β ∈ B, the above process will compute a p′ ∈ φ1(p,X). By construction, each of these
p′’s will satisfy, p′ ∈ P and equation (5), as needed. However, it is not immediate why such a set of p′’s will
form a convex set, as required to apply the Kakutani’s fixed point theorem.

In fact, to apply the Kakutani’s fixed-point theorem, we need to show that the above complex process
creates a φ, that has closed graph (continuity-like property), and φ(p,X) is convex for each (p,X) ∈ S.
This again requires involved argument and is formally proved in Lemmas 15 and 16 of Section 2. Then, φ
is sure to have a fixed-point which maps to CE as discussed above. We refer the reader to Section 2 for a
detailed formal discussion of the entire proof.

Our proof technique extends to show existence of a CE for chore division with general monotone convex
disutility functions where an agent can do only a subset of chores and with arbitrary endowments, under a
similar sufficient condition. Thus, our overall approach may be of independent interest to handle more
general problems involving chores.

1.3 Further Related Work

The fair division literature is too vast to survey here, so we refer to the excellent books [BT96, RW98,
Mou03] and a recent survey article [Mou19], and restrict attention to previous work that appears most
relevant.

Most of the work in fair division is focused on allocating goods with a few exceptions of chores [Su99,
AS14, BT96, RW98]. The papers [BMSY17, BMSY19] consider the case of mixed manna that contains
both goods and bads in the Fisher model and assume all (dis)utility values to be finite. For the goods case,
competitive equilibrium maximizes the Nash welfare, i.e., geometric mean of agents’ utilities. In case of
chores (or mixed manna), [BMSY17] shows that critical points of the geometric mean of agents’ disutilities
on the (Pareto) efficiency frontier are the competitive equilibrium profiles. By building on this character-
ization, [BCM21] recently obtained an efficient algorithm to find an approximate competitive equilibrium
(FPTAS). For the special case of constantly many agents (or chores), polynomial-time algorithms are known
for computing a competitive equilibrium in the Fisher model [BS19, GM20]. In a recent work, [CGMM21]
give a simplex-like algorithm for computing a competitive equilibrium in the exchange model.

Organization of the Rest of the Paper. We present our two main results in the upcoming sections. Sec-
tion 2 contains the sufficient conditions under which a CE always exists and the proof of existence. Section 3
contains the NP-completeness of determining a CE with chores in the Fisher model.

2 Sufficient Conditions for the Existence of CE

In this section, we formulate certain conditions and prove that if any instance of chore division satisfies
these conditions, then the instance will admit a CE. The reader is encouraged to read Section 1.2.1 to get an
overall picture of the results, ideas and techniques used in this section.
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Recall our sufficient conditions:

Condition 1: The economy graph G of the instance is strongly connected, and

Condition 2: D is a disjoint union of bicliques D1, D2, . . . , Dd for some d ≥ 1.

Let I denote all the instances of chore division that satisfy Condition 1 and Condition 2. We now show
that all instances in I admit a CE. Consider any instance I = 〈G,D〉 ∈ I such thatG is the economy graph
of the instance and D = ∪i∈[d]Di, where each Di = (Ai ∪ Bi, EDi) is a complete bipartite graph, disjoint
from Di′ (i′ 6= i). For ease of notation,

• we represent our set A of n agents as [n] (we write ai as i) and the set B of m chores as [m] (we write
chore bj as j),

• we also write pj to denote the price of chore bj (instead of p(bj)) and wi,j to represent the agent ai’s
initial endowment of chore bj (instead of w(ai, bj)), and

• lastly, we also assume without loss of generality that the total endowment of each chore is one:∑
i∈[n]wi,j = 1.

Now, we briefly introduce some basic definitions and concepts required to prove the existence of a CE.

Normalized Prices and Bounded Allocations. A price vector p = 〈p1, p2, . . . , pm〉 is called a normalized
price vector if

• pj ≥ 0 for all j ∈ [m],

•
∑

j∈[m] pj = 1, and

•
∑

i∈Ak
∑

j∈[m]wi,j ·pj =
∑

j∈Bk pj for each componentDk in the disutility graph, i.e., sum of prices
of chores in Dk equals the sum of total money of the agents in Dk.

Let P be the set of all normalized price vectors. We first show that the set P is non-empty.

Observation 3. We have P 6= ∅.

Proof. Here we will make use of a general fact that will be useful for a proof later as well.

Fact 1. Let Z ∈ Rn×n be a square matrix such that Zij ≥ 0 for all j 6= i (all the non-diagonal entries of
Z are non-negative) and

∑
i∈[n] Zij = 0 for all j ∈ [n] (column sums are zero), then there exists a vector

t ∈ Rn≥0 such that
∑

i∈[n] ti = 1 and Z · t = 0.

The proof of this fact can be found at the end of this section. Using this fact, we will outline a proof
that P is non-empty. For each component Dk of the disutility matrix, we pick a chore bk ∈ Bk and we set
pj = 0 for all j ∈ Bk \ {bk}. Note that to show that P is non-empty, it suffices to show that there exists a
vector p′ = 〈p′1, p′2, . . . , p′d〉 (intuitively each p′k corresponds to the price of chore bk ∈ Bk, i.e., pbk ) such
that p′k ≥ 0 for all k ∈ [d],

∑
k∈[d] p

′
k = 1 and we have,∑

i∈Ak

∑
k′∈[d]

wi,bk′ · p
′
k′ − p′k = 0 for all k ∈ [d] (6)
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Let W be the coefficient matrix of the system of equations in (6), i.e., W · p′ = 0 represents the system of
equations in (6). Observe that Wkk′ =

∑
i∈Ak wi,bk′ if k 6= k′ and Wkk =

∑
i∈Ak wi,bk − 1. Therefore the

non-diagonal entries of W are non-negative and also note that the column sum is zero:∑
k∈[d]

Wkk′ =
∑
k∈[d]

∑
i∈Ak

wi,bk′ − 1

=
∑
i∈[n]

wi,bk′ − 1

= 1− 1 (total endowment of chore k′ is one)

= 0.

Therefore W satisfies all the conditions in Fact 1. Therefore, by Fact 1 there exists a p′ ∈ Rd≥0, such that∑
k∈[d] p

′
d = 1 and W · p′ = 0. Therefore, P is non-empty.

Since P is defined by a set of linear equalities and inequalities, P is closed and convex too. Additionally,
since p ∈ Rm≥0 and

∑
j∈[m] pj = 1 for all p ∈ P , P is compact.

An allocation X ∈ Rn×m≥0 , is called a bounded allocation if each Xij (quantifies the amount of chore j
allocated to agent i) is non-negative and is at most m · dmax

dmin
, where dmax and dmin refer to the largest and

smallest finite entry in the disutility matrix. Let X be the set of all bounded allocations. Observe that the set
X is non-empty, convex and compact. Also, we have that P is non-empty, convex and compact. We define
a compact, convex and non-empty subset of R(m+nm), S =

⋃
p∈P

⋃
X∈X〈p,X〉 9.

Correspondence φ. Our goal is to define a correspondence or equivalently a set valued function φ : S →
2S , such that φ has at least one fixed point and any fixed point of φ will correspond to a CE. We will first
show some properties that if satisfied by φ, then φ will have at least one fixed point and any fixed point of φ
will correspond to a CE. Then, we will define a φ that satisfies these properties.

Properties. We first make some basic definitions that will help us to state the properties. We call a bounded
allocation Y ∈ X an extended optimal allocation at the price vector p if and only if,

• for all i ∈ Ak, we have Yij > 0 only if d(i, j) 6=∞, and

• for all i ∈ Ak, where
∑

j∈Bk pj > 0, we have Yij > 0 only if d(i,j)pj
≤ d(i,`)

p`
for all ` ∈ [m], and

• for all i ∈ Ak, where
∑

j∈Bk pj > 0, we have
∑

j∈[m] Yij · pj =
∑

j∈[m]wi,j · pj .

Let Xp ⊆ X denote the set of all extended optimal allocations at the price vector p. Note that in an extended
optimal allocation, the only agents that do not get their optimal bundles (defined in Definition 1) are the ones
that belong to a component where the sum of prices of all the chores in the component are zero, as in an
extended optimal allocation, an agent that belongs to a component where the sum of prices of all the chores
is zero, can be allocated any bundle that does not involve her earning from a chore with infinite disutility
(and not necessarily her optimal bundle). However, if pj > 0 for all j ∈ [m], then every extended optimal
allocation is also an optimal allocation (where every agent receives their optimal bundles). Right now, it
may not be immediate that Xp is non-empty. However, we show that this is indeed the case, as agents are
allowed to consume goods to a significant extent (Yij is allowed to be as large as m · dmax

dmin
).

Lemma 4. For all p ∈ P , we have Xp ⊆ X and Xp 6= ∅.
9We abuse notation slightly here: 〈p,X〉 refers to the (m+ nm)-dimensional vector 〈p1, p2, . . . , pm, X11, X12, . . . , Xnm〉.
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Proof. By definition Xp ⊆ X. Therefore, it suffices to show that it is non-empty. Consider any p ∈ P . Con-
sider any agent a in the component Dk. Let w(a) =

∑
j∈[m]wa,j · pj . If w(a) = 0, then we set Yaj = 0 for

all j ∈ [m] and we trivially have
∑

j∈[m] Yaj · pj =
∑

j∈[m]wa,j · pj = 0 and 〈Ya1, . . . , Yam〉 is an extended
optimal bundle for agent a at p (irrespective of whether

∑
j∈Bk pj > 0 or not). So assume that w(a) > 0.

Since p ∈ P , we have that the sum of prices of the chores in Dk,
∑

j∈Bk pj =
∑

i∈Ak
∑

j∈[m]wi,j · pj ≥∑
j∈[m]waj · pj = w(a) > 0. This implies that there is at least one chore b in the component Dk such that

pb ≥ w(a)
m . Let b′ be a chore such that d(a, b′) 6= ∞, and d(a,b′)

pb′
≤ d(a,`)

p`
for all ` ∈ [m]. This implies that

d(a,b′)
pb′
≤ d(a,b)

pb
. Therefore, we have that

pb′ ≥
d(a, b′)

d(a, b)
· pb

≥ dmin

dmax
· pb

≥ dmin

mdmax
·w(a).

We set Yab′ = w(a)
pb′

. Observe that Yab′ ≤ m · dmax
dmin

. Therefore, Y is a bounded allocation, i.e., Y ∈ X.

Also, note that agent a earns her entire money of w(a) by doing Yab′ = w(a)
pb′

amount of chore b′ such that

d(a, b′) 6= ∞, d(a,b′)
pb′

≤ d(a,`)
p`

for all ` ∈ [m]. Thus, Y is an extended optimal bundle also. Therefore,
Xp 6= ∅.

We are now ready to define the properties of φ. For any point 〈p,X〉 ∈ S, consider any point 〈p′, X ′〉 ∈
φ(〈p,X〉). Then,

• Property P1: X ′ ∈ Xp and p′ ∈ P .

• Property P2: For any two agents i and j that belong to the same component Dk of the disutility graph
D (say i, j ∈ Ak), such that pj > 0, we have

p′i
p′j

=
pi + max (1−

∑
`∈[n]X`i, 0)

pj + max (1−
∑

`∈[n]X`j , 0)
.

.

• Property P3: φ(〈p,X〉) is non-empty and convex.

• Property P4: φ has a closed graph10.

We will now show that any correspondence φ that satisfies P1, P2, P3 and P4 will have at least one
fixed point and any fixed point will correspond to CE. We first show that φ has a fixed point.

Lemma 5. Consider any correspondence φ that satisfies properties P1, P2, P3 and P4. φ has a fixed point.

Proof. By property P1 we have that if 〈p′, X ′〉 ∈ φ(〈p,X〉), then 〈p′, X ′〉 ∈ S (as p′ ∈ P and X ′ ∈ Xp ⊆
X). Therefore, φ : S → 2S . The set S is non-empty, compact and convex. Furthermore, by properties
P3 and P4, we have that φ(〈p,X〉) is non-empty and convex, and φ has a closed graph. Therefore, by
Kakutani’s fixed point theorem, φ has a fixed point.

10A correspondence φ : X → 2Y has a closed graph if for all sequences (xn)n∈N and (yn)n∈N, with (xn)n∈N converging to x
and (yn)n∈N converging to y, such that xn ∈ X and yn ∈ φ(xn) for all n, we have y ∈ φ(x).
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Now we show that any fixed point of a correspondence φ that satisfies properties P1, P2, P3 and P4

gives a CE.

Lemma 6. Consider any correspondence φ that satisfies properties P1, P2, P3 and P4. Consider any fixed
point 〈p,X〉 of φ. Then 〈p,X〉 is a CE.

Proof. Consider any fixed point 〈p,X〉 ∈ φ(〈p,X〉). By property P1, it follows that X ∈ Xp. As men-
tioned after that the definition of the extended optimal bundle, if we have pj > 0 for all j ∈ [m], then each
agent gets her optimal bundle in Xp. Therefore, to show that p and X correspond to a CE, it suffices to
show that pj > 0 for all j ∈ [m] and

∑
i∈[n]Xij = 1 for all chores j ∈ [m]. We first show that pj > 0 for

all j ∈ [m]. We prove this by contradiction. Let us assume that there are some chores with zero prices. But
first, we make an observation that if there are some chores with zero prices, one of the chores will belong to
a component, where the sum of prices of all the chores in that component is non-zero.

Claim 7. Let p be any price vector in P . If there exists some chore j such that pj = 0, then there exists a
chore b in the component D` of the disutility graph such that pb = 0 and

∑
j∈B` pj > 0.

Proof. We prove this claim by contradiction. Assume otherwise: All chores with zero prices only occur
in components where the sum of prices of the chores in the component is zero. Let D`1 , D`2 , . . . , D`r

be the components of the disutility graph where the sum of prices of all the chores in the component are
zero, and there are no chores with zero prices in the components

⋃
k∈[d]\{`1,...,`r}Dk. Since the economy

graph G is strongly connected (by Condition 1), there is an edge from some agent in
⋃
k∈[r]A`k to some

agent in
⋃
k∈[d]\{`1,...,`r}A`k , say from an agent b′ ∈ A`r′ for some r′ ∈ [r], to an agent b̃ ∈ A`r̃ for

`r̃ ∈ [d] \ {`1, . . . , `r}. Since the agent b̃ has finite disutility only for the chores in B`r̃ , we can conclude
that there exists a chore c̃ ∈ B`r̃ , such that wb′,c̃ > 0. Since c̃ ∈ B`r̃ , and there are no chores with zero
prices in D`r̃ (by assumption), we also have pc̃ > 0. Then, we have

∑
j∈[m]wb′,j · pj ≥ wb′,c̃ · pc̃ > 0,

implying that
∑

i∈A`r′

∑
j∈[m]wi,j · pj > 0. However, since p ∈ P , we have that for component D`r′ of

the disutility graph, the sum of prices of the chores in the component equals the sum of prices of the chores
owned by the agents in the same component, implying

∑
j∈B`r′

pj =
∑

i∈A`r′

∑
j∈[m]wi,j · pj > 0, which

is a contradiction.

Thus, let b be a chore in the component Dk of the disutility graph such that pb = 0 and
∑

j∈Bk pj > 0.
Then, there is at least one chore b′ ∈ Bk such that pb′ > 0. Since Dk is biclique (by Condition 2), we have
that d(i, b′) 6= ∞ for all i ∈ Ak. This implies that for all agents i ∈ Ak, we have d(i,b′)

pb′
< d(i,b)

pb
. Since

X ∈ Xp, we have that Xib = 0, for all i ∈ Ak and also for all i ∈ [n] (as X ∈ Xp and Xib > 0 only if
d(i, b) 6= ∞ and for all agents in [n] \ Ak we have d(i, b) = ∞), implying

∑
`∈[n]X`b = 0. Since b and b′

both belong to the same component Dk, and pb′ > 0, by Property P2, we have,

pb
pb′

=
pb + max (1−

∑
`∈[n]X`b, 0)

pb′ + max (1−
∑

`∈[n]X`b′ , 0)

=
0 + 1

pb′ + max (1−
∑

`∈[n]X`b′ , 0)

6= 0

=
pb
pb′
,

which is a contradiction. Thus, none of the chores can have zero prices and therefore, we have pj > 0 for
all j ∈ [m].
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We now show that
∑

i∈[n]Xij = 1 for all j ∈ [m]. We prove this also by contradiction. So assume
otherwise and for some chore b ∈ Bk we have

∑
i∈[n]Xib > 1 (or

∑
i∈[n]Xib < 1). Note that, since p ∈ P ,

for the component Dk of the disutility graph, we have,∑
j∈Bk

pj =
∑
i∈Ak

∑
j∈[m]

wi,j · pj . (7)

Also, since X ∈ Xp and every component of the disutility graph has non-zero total price of the chores in
it, for every agent i ∈ Ak, we have

∑
j∈[m]wi,j · pj =

∑
j∈[m]Xij · pj =

∑
j∈Bk Xij · pj . Substituting∑

j∈[m]wi,j · pj as
∑

j∈Bk Xij · pj in (7) we have,∑
j∈Bk

pj =
∑
i∈Ak

∑
j∈Bk

Xij · pj

=
∑
i∈[n]

∑
j∈Bk

Xij · pj

=
∑
j∈Bk

pj · (
∑
i∈[n]

Xij) .

Therefore, if
∑

i∈[n]Xib > 1 (or
∑

i∈[n]Xib < 1) for some b ∈ Bk, then there exists a b′ ∈ Bk such

that
∑

i∈[n]Xib′ < 1 (or
∑

i∈[n]Xib′ > 1). This would imply that
pb+max(1−

∑
`∈[n]X`b,0)

pb′+max(1−
∑
`∈[n]X`b′ ,0)

< pb
pb′

when∑
i∈[n]Xib > 1 and

pb+max(1−
∑
`∈[n]X`b,0)

pb′+max(1−
∑
`∈[n]X`b′ ,0)

> pb
pb′

when
∑

i∈[n]Xib < 1, which is a contradiction (as
pb+max(1−

∑
`∈[n]X`b,0)

pb′+max(1−
∑
`∈[n]X`b′ ,0)

= pb
pb′

if 〈p,X〉 is a fixed point by property P2).

Now, it suffices to show that there exists a correspondence φ that satisfies all the four properties to show
the existence of CE for every instance I ∈ I. To this end, we first define a correspondence φ and show that
it satisfies all the four properties.

Finding a Correspondence φ that Satisfies all the Properties. Given a p ∈ P and X ∈ X, we define
the vector q = 〈q1, q2, . . . , qm〉 such that

qj(p,X) = pj + max (1−
∑
i∈[n]

Xij , 0) (8)

We now introduce a variable βj(p,X) for each chore j ∈ [m]. Let β(p,X) = 〈β1(p,X), β2(p,X),
. . . , βm(p,X)〉. We now outline some constraints that β(p,X) must satisfy. We have,

βj(p,X) ≥ 0 for all j ∈ [m], (9)∑
j∈Bk

βj(p,X) = 1, for all k ∈ [d], (10)

βj(p,X) =
qj(p,X)∑

j′∈Bk qj′(p,X)
for all j, k, such that j ∈ Bk, and

∑
j′∈Bk

qj′(p,X) > 0. (11)

Let B(p,X) be set of all β(p,X) that satisfy the system of linear equalities and inequalities in 9, 10
and 11. We now show that B(p,X) is non-empty, convex and compact.

For each β(p,X) ∈ B(p,X), we introduce a system of linear equations with a variable p̃k for each
componentDk of the disutility graphD. Let p̃ = 〈p̃1, p̃2, . . . , p̃d〉 (recall that d is the number of components
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of the disutility graph). We now outline a system of linear equations that needs to be satisfied by a vector p̃.
As of now, let us think of each p̃k as the sum of prices of the chores in the component Dk and βj(p,X) · p̃k
as the price of each chore j ∈ Bk. With these price meanings in mind, for each component Dk of D, we
write the equation (variables being

⋃
k∈[d] p̃k) that represents the price of the cumulative endowments of the

agents of the component equals the total prices of the chores in the same component.∑
i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · βj(p,X) · p̃k − p̃k = 0. (12)

We represent the system of equations in (12) as

M(β(p,X)) · p̃ = 0 . (13)

We now make some observation about the non-negativity of the non-diagonal entries and the zero column
sums of the matrix M(β(p,X)).

Observation 8. We have M(β(p,X))kk′ ≥ 0 as long as k 6= k′ (every non-diagonal entry of M(β,X) is
non-zero) and

∑
k∈[d]M(β(p,X))kk′ = 0 for all k′ ∈ [d] (column sums are zero).

Proof. We first carefully look at any column M(β(p,X))∗k′ of M(β,X). Note that for all k 6= k′, we
have, M(β,X)kk′ =

∑
i∈Ak

∑
j∈Bk′

wi,j · βj(p,X). We have Mkk =
∑

i∈Ak
∑

j∈Bk wi,j · βj(p,X) − 1.
Therefore, every non-diagonal entry in M(β(p,X)) is non-negative. Now we just need to show that 1T ·
M(β(p,X))∗k′ = 0. Observe,

1T ·M(β(p,X))∗k′ =
∑
k∈[d]

∑
i∈Ak

∑
j∈Bk′

wi,j · βj(p,X)− 1

=
∑
j∈Bk′

βj(p,X) ·
∑
k∈[d]

∑
i∈Ak

wi,j − 1

=
∑
j∈Bk′

βj(p,X) ·
∑
i∈[n]

wi,j − 1

=
∑
j∈Bk′

βj(p,X)− 1

= 0.

This shows that 1T ·M(β(p,X)) = 0T .

We first make some observations about the solution to the system of equations in (13) (and conse-
quently (12)). Observe that M(β(p,X)) satisfies all the conditions in Fact 1. Therefore, we have the
following Observation.

Observation 9. For each β(p,X) ∈ B(p,X), there exists a vector p̃ ∈ Rd≥0, such that
∑

j∈[d] p̃j = 1 and
M(β(p,X)) · p̃ = 0.

We are now ready to define the correspondence. Given any 〈p,X〉 ∈ S, we determine the vector q(p,X)
as in (8). Let B(p,X) be the set of all β(p,X) that satisfy the set of linear equalities and inequalities in 9, 10
and 11. For each β(p,X) ∈ B(p,X), let P̃ (β(p,X)) ⊆ Rd≥0 be the set of all vectors that satisfy the
conditions in Observation 9. We now define the set P (β(p,X)) ⊆ Rm≥0 as,

P (β(p,X)) =
{
p ∈ Rm≥0 | pj = βj(p,X) · p̃k where chore j ∈ Bk and p̃ ∈ P̃ (β(p,X))

}
(14)

Given any 〈p,X〉 ∈ S, we define

φ(〈p,X〉) =
{
〈p,X ′〉 | p ∈ P (β(p,X)) and β(p,X) ∈ B(p,X) and X ′ ∈ Xp

}
. (15)

For the rest of this section, we will now show that φ satisfies properties P1, P2, P3 and P4.
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φ satisfies properties P1, P2, P3 and P4. Now that we have defined the correspondence, we prove that
it satisfies all the necessary properties. To this end consider a point 〈p′, X ′〉 ∈ φ(〈p,X〉).

Lemma 10 (Property P1). Let 〈p′, X ′〉 ∈ φ(〈p,X〉). We have X ′ ∈ Xp and p′ ∈ P .

Proof. We need to show that p′ ∈ P and X ′ ∈ Xp ⊆ X. Note that by the definition of φ we have
X ′ ∈ Xp ⊆ X. Therefore, we only need to show that p′ ∈ P . Given p and X , let q(p,X) be the vector
obtained as in (8) and let B(p,X) be the set of all β(p,X) ∈ Rm that satisfy the set of linear inequalities
and equalities in 9, 10 and 11. By the definition of the correspondence φ (Equation 15), we have that
p′ ∈ P (β′(p,X)) for some β′(p,X) ∈ B(p,X). Equation 14 implies that for each chore j ∈ Bk, we have
p′j = β′j(p,X) · p̃k, where p̃ ∈ P̃ (β′(p,X)). Now we make three claims which show that p′ ∈ P .

Claim 11. We have p′j ≥ 0 for all j ∈ [m].

Proof. Let us consider any chore j that belongs to the component Dk of the disutility graph. We have,

p′j = β′j(p,X) · p̃k.

β′(p,X) satisfies the system of linear inequalities in 9 and thus β′j(p,X) ≥ 0. Also, p̃ ∈ P̃ (β′j(p,X)) and
by the definition of P̃ (β′(p,X)) we have that p̃k ≥ 0. Thus p′j ≥ 0.

Claim 12. We have
∑

j∈[m] p
′
j = 1.

Proof. We have, ∑
j∈[m]

p′j =
∑
k∈[d]

∑
j∈Bk

β′j(p,X) · p̃k

=
∑
k∈[d]

p̃k ·
∑
j∈Bk

β′j(p,X).

Since β′(p,X) satisfies the set of linear equalities in 10, we have that
∑

j∈Bk β
′
j(p,X) = 1. Therefore,

we have
∑

j∈[m] p
′
j =

∑
k∈[d] p̃k. Since p̃ ∈ P̃ (β′(p,X)), by definition of P̃ (β′(p,X)), we have that∑

k∈[d] p̃k = 1 and thus
∑

j∈m p
′
j = 1.

Claim 13. For each component Dk of the disutility graph, we have
∑

i∈Ak
∑

j∈[m]wi,j · p′j =
∑

j∈Bk p
′
j .

Proof. We have, ∑
i∈Ak

∑
j∈[m]

wi,j · p′j =
∑
i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · β′j(p,X) · p̃k′ .

p̃ ∈ P̃ (β′(p,X)), and by definition of P̃ (β′(p,X)), p̃ satisfies (13) and therefore also (12). Thus, we have∑
i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · β′j(p,X) · p̃k′ = p̃k. Therefore, we have∑
i∈Ak

∑
j∈[m]

wi,j · p′j = p̃k

=
∑
j∈Bk

β′j(p,X) · p̃k (as
∑
j∈Bk

β′j(p,X) = 1 by 10)

=
∑
j∈Bk

p′j .
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This shows that p′ ∈ P and completes the proof.

Lemma 14 (Property P2). Let 〈p′, X ′〉 ∈ φ(〈p,X〉). For any two agents i and j that belong to the same
component Dk of the disutility graph D (i, j ∈ Ak), such that pj > 0, we have p′i/p

′
j =

(
pi + max (1 −∑

`∈[n]X`i, 0)
)
/
(
pj + max (1−

∑
`∈[n]X`j , 0)

)
.

Proof. Consider any 〈p′, X ′〉 ∈ φ(〈p,X〉). By the definition of the correspondence φ (Equation 15), we
have that p′ ∈ P (β′(p,X)) for some β′(p,X) ∈ B(p,X). Equation 14 implies that for each chore j ∈ Bk,
we have p′j = β′j(p,X) · p̃k, where p̃ ∈ P̃ (β′(p,X)).

Let i, j be two chores in the component Dk of the disutility graph such that pj > 0. Since pj > 0, we
have that qj(p,X) ≥ pj > 0. Therefore,

∑
j′∈Bk qj′(p,X) > 0. This implies that for all j ∈ Bk, we have

β′j(p,X) = qj(p,X)/(
∑

j′∈Bk qj′(p,X)). Therefore we have,

p′i
p′j

=
β′i(p,X) · p̃k
β′j(p,X) · p̃k

=
β′i(p,X)

β′j(p,X)

=
qi(p,X)

qj(p,X)

=
pi + max (1−

∑
`∈[n]X`i, 0)

pj + max (1−
∑

`∈[n]X`j , 0)
. (by definition of q(p,X) in (8))

Lemma 15 (Property P3). φ(〈p,X〉) is non-empty and convex.

Proof. We first show that Xp is convex. Consider Y ∈ Xp and Y ′ ∈ Xp. Let Y ′′ = λ · Y + (1 − λ) · Y ′
for some λ ∈ [0, 1]. First observe that 0 ≤ min(Yij , Y

′
ij) ≤ Y ′′ij ≤ max (Yij , Y

′
ij) ≤ m · dmax

dmin
. Therefore,

Y ′′ ∈ X. Now to show that Y ′′ ∈ Xp, we need to show that,

1. for all i ∈ Ak, we have Y ′′ij > 0 only if d(i, j) 6=∞, and

2. for all i ∈ Ak, where
∑

j∈Bk pj > 0, we have Y ′′ij > 0 only if d(i,j)pj
≤ d(i,`)

p`
for all ` ∈ [m], and

3. for all i ∈ Ak, where
∑

j∈Bk pj > 0, we have
∑

j∈[m] Y
′′
ij · pj =

∑
j∈[m]wi,j · pj for all i ∈ [n].

To this end, note that for all i ∈ Ak, both Yij and Y ′ij are positive, only if d(i, j) 6= ∞. Therefore, Y ′′ij > 0
only if d(i, j) 6= ∞. Similarly, for all i ∈ Ak, where

∑
j∈Bk pj > 0, both Yij and Y ′ij are positive, only if

d(i,j)
pj
≤ d(i,`)

p`
for all ` ∈ [m]. Therefore Y ′′ij > 0 only if d(i,j)pj

≤ d(i,`)
p`

for all ` ∈ [m].
Lastly, for all i ∈ Ak, where

∑
j∈Bk pj > 0, we have,∑

j∈[m]

Y ′′ij · pj =
∑
j∈[m]

(λ · Yij + (1− λ) · Y ′ij) · pj

= λ · (
∑
j∈[m]

Yij · pj) + (1− λ) · (
∑
j∈[m]

Y ′ij · pj)

= λ ·
∑
j∈[m]

wi,j · pj + (1− λ) ·
∑
j∈[m]

wi,j · pj

=
∑
j∈[m]

wi,j · pj .
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Thus, Y ′′ ∈ Xp. Therefore, Xp is convex. By Lemma 4, we have that Xp is non-empty as well. Therefore
Xp is convex and non-empty.

Let P ′ =
{
p | p ∈ P (β(p,X)) for β(p,X) ∈ B(p,X)

}
. We now show that P ′ is convex and non-

empty. By Observation 9, we have that for each β(p,X) ∈ B(p,X), P̃ (β(p,X)) 6= ∅ and by definition of
P (β(p,X)) (Equation 14), we have that P (β(p,X)) is also non-empty. Therefore, P ′ is also non-empty.
Now we show that P ′ is convex as well. To this end, consider two price vectors t and t′ in P ′ or equivalently
t ∈ P (β(p,X)) and t′ ∈ P (β′(p,X)). To show convexity of P ′, it suffices to show that λ·t+(1−λ)·t′ ∈ P ′
for all λ ∈ [0, 1] or equivalently λ ·t+(1−λ) ·t′ ∈ P (β′′(p,X)) for some β′′(p,X) ∈ B(p,X). To this end,
we observe that for each chore j in the component Dk of the disutility graph, we have tj = βj(p,X) · sk,
where s ∈ P̃ (β(p,X)), and t′j = β′j(p,X) · s′k, where s′ ∈ P̃ (β′(p,X)). We now define the vectors
β′′(p,X) and t′′ ∈ Rm as follows: For each chore j in component Dk of the disutility graph, we define

β′′j (p,X) =


λ·βj(p,X)·sk+(1−λ)·β′j(p,X)·s′k

λsk+(1−λ)·s′k
if sk 6= 0 or s′k 6= 0

βj(p,X) otherwise,

and

t′′j = β′′j (p,X) · s′′k,

where s′′ = (λ · s + (1 − λ) · s′). We first observe that t′′ = λ · t + (1 − λ) · t′: Consider any j ∈ Bk. If
both sk and s′k are zero, then s′′k = λ · sk + (1− λ) · s′′k = 0. Therefore, we have

t′′j = β′′(p,X) · s′′k
= 0

= β(p,X) · sk + β′(p,X) · s′k (as sk = s′k = 0)

= λ · tj + (1− λ)t′j

When at least one of sk or s′k is non-zero, then s′′k = λ · sk + (1− λ) · s′k 6= 0 and we have,

t′′j = β′′(p,X) · s′′k

=
λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k

λsk + (1− λ) · s′k
· (λsk + (1− λ) · s′k)

= λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k
= λ · tj + (1− λ) · t′j .

Now it suffices to show that β′′(p,X) ∈ B(p,X) and s′′k ∈ P̃ (β′′(p,X)) as this will imply that λt + (1 −
λ)t′ = t′′ ∈ P (β′′(p,X)) for some β′′(p,X) ∈ B(p,X). We first show that β′′(p,X) ∈ B(p,X). Since sk,
s′k, βj(p,X), and β′j(p,X) are non-negative and λ ∈ [0, 1], we have that β′′j (p,X) ≥ 0 for all j ∈ [m] and
thus β′′(p,X) satisfies the linear inequalities in 9.

Now we show that β′′(p,X) satisfies the linear equalities in 10. To this end, consider any component
Dk of the disutility graph. If sk = s′k = 0, then we have β′′j (p,X) = βj(p,X) for all j ∈ Bk. Therefore,
we have

∑
j∈Bk β

′′
j (p,X) =

∑
j∈Bk βj(p,X) = 1 (as β(p,X) ∈ B(p,X)) and we are done. If one of sk
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or s′k is non-zero, we have,

∑
j∈Bk

β′′j (p,X) =
∑
j∈Bk

λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k
λ · sk + (1− λ) · s′k

=
λ · sk ·

∑
j∈Bk βj(p,X) + (1− λ) · s′k ·

∑
j∈Bk β

′
j(p,X)

λ · sk + (1− λ) · s′k

=
λ · sk + (1− λ) · s′k
λ · sk + (1− λ) · s′k

= 1

Finally, we show that β′′(p,X) satisfies the linear equalities in 11. To this end, consider any component Dk

such that
∑

j′∈Bk qj(p,X) > 0. In this case, we have βj(p,X) = β′j(p,X) = qj(p,X)/(
∑

j′∈Bk qj′(p,X)).
Now, if sk = s′k = 0, then we have β′′j (p,X) = βj(p,X) = qj(p,X)/ (

∑
j′∈Bk qj′(p,X)) and we are done.

If one of sk or s′k is non-zero we have,

β′′j (p,X) =
λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k

λ · sk + (1− λ) · s′k

=
λ · qj(p,X)∑

j′∈Bk
qj′ (p,X) · sk + (1− λ) · qj(p,X)∑

j′∈Bk
qj′ (p,X) · s

′
k

λ · sk + (1− λ) · s′k

=
qj(p,X)∑

j′∈Bk qj′(p,X)
·
λ · sk + (1− λ) · s′k
λ · sk + (1− λ) · s′k

=
qj(p,X)∑

j′∈Bk qj′(p,X)
.

Thus β′′(p,X) ∈ B(p,X). Now, it only suffices to show that s′′ ∈ P̃ (β′′(p,X)). Recall that to show that
s′′ ∈ P̃ (β′′(p,X)), we need to show that s′′k ≥ 0 for all k ∈ [d],

∑
k∈[d] s

′′
k = 1, and for all k ∈ [d], we have,∑

i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · β′′j (p,X) · s′′k′ − s′′k = 0

To this end, we first note that since s ∈ P̃ (β(p,X)), we have that

• sk ≥ 0 for all k ∈ [d],

•
∑

k∈[d] sk = 1, and

•
∑

i∈Ak
∑

k′∈[d]
∑

j∈Bk′
wi,j · βj(p,X) · sk′ − sk = 0 for all k ∈ [d].

Analogous conditions are also satisfied by s′ as it belongs to P̃ (β′(p,X)). Now, observe that s′′k = λ · sk +
(1− λ) · s′k ≥ 0 as both sk and s′k are non-negative. Similarly,∑

k∈[d]

s′′k = λ ·
∑
k∈[d]

sk + (1− λ) ·
∑
k∈[d]

s′k

= λ · 1 + (1− λ) · 1 = 1.

Finally, we show that
∑

i∈Ak
∑

k′∈[d]
∑

j∈Bk′
wi,j · β′′j (p,X) · s′′k′ − s′′k = 0. To this end, let K =

{k | k ∈ [d] and s′′k > 0}. Note that it suffices to show
∑

i∈Ak
∑

k′∈K
∑

j∈Bk′
wi,j · β′′j (p,X) · s′′k′ − s′′k =
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0 for all k ∈ [d]. Also, for all k /∈ K, we have sk = s′k = 0 as well. Therefore, we also have∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j ·βj(p,X)·sk′−sk = 0 and
∑

i∈Ak
∑

k′∈K
∑

j∈Bk′
wi,j ·β′j(p,X)·s′k′−s′k = 0

for all k ∈ [d]. Now note that for all k ∈ [d], we have,∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · β′′j (p,X) · s′′k′ − s′′k

=

( ∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j ·
λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k

λsk + (1− λ) · s′k
· s′′k′

)
− s′′k

=

( ∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j ·
λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k

s′′k
· s′′k
)
− s′′k

=
( ∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · (λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k)
)
− s′′k

=
( ∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · (λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k)
)
− (λ · sk + (1− λ) · s′k)

= λ ·
( ∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · βj(p,X) · sk − sk
)

+ (1− λ) ·
( ∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · β′j(p,X) · s′k − s′k
)

= 0 + 0 = 0.

Therefore s′′ ∈ P̃ (β′′(p,X)).
Therefore, we have that both the sets P ′ and Xp are non-empty and convex. thus, φ(〈p,X〉) is also

non-empty and convex as it is the Cartesian product of P ′ and Xp.

Lemma 16 (Property P4). φ has a closed graph.

Proof. Consider a sequence (〈pn, Xn〉)n∈N that converges to 〈p∗, X∗〉 and 〈pn, Xn〉 ∈ S for all n. Sim-
ilarly, consider the sequence (〈rn, Y n〉)n∈N that converges to 〈r∗, Y ∗〉, such that 〈rn, Y n〉 ∈ φ(〈pn, Xn〉)
for all n. To show that φ has a closed graph, we need to show that 〈r∗, Y ∗〉 ∈ φ(〈p∗, X∗〉). To show that,
〈r∗, Y ∗〉 ∈ φ(〈p∗, X∗〉), we need to show,

1. r∗ ∈ P (β(p∗, X∗)), for some β(p∗, X∗) ∈ B(p∗, X∗), and

2. Y ∗ ∈ Xp∗ .

Proving r∗ ∈ P (β(p∗, X∗)), for some β(p∗, X∗) ∈ B(p∗, X∗): We first outline the necessary and suffi-
cient condition for any vector p′ to be in P (β(p,X)), as this will be useful for our proof.

Observation 17. p′ ∈ P (β(p,X)) if and only if

1. p′ ∈ P , and

2. for each chore j in component Dk, we have p′j = βj(p,X) ·
∑

j∈Bk p
′
j .

Proof. We first show the “if” direction. To show that p′ ∈ P (β(p,X)), it suffices to show that for each
chore j ∈ Bk, we have p′j = βj(p,X) · p̃k, such that p̃ ∈ P̃ (β(p,X)). For each component Dk of the
disutility graph, let p̃k =

∑
j∈Bk p

′
j . Observe that for each chore j ∈ Bk we have p′j = βj(p,X) · p̃k. It now

suffices to show that p̃ = 〈p̃1, p̃2, . . . , p̃d〉 ∈ P̃ (β(p,X)). To this end, observe that p̃k =
∑

j∈Bk p
′
j ≥ 0 as

p′j ≥ 0 for all j ∈ [m] (as p′ ∈ P ). Furthermore,
∑

k∈[d] p̃k =
∑

j∈[m] p
′
j = 1 (as p′ ∈ P ). Now, to show
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p̃ ∈ P̃ (β(p,X)), it suffices to show that p̃ satisfies the system of equations in (13) or equivalently those
in (12). To this end, since p′ ∈ P , for each component Dk we have,∑

i∈Ak

∑
j∈[m]

wi,j · p′j =
∑
j∈Bk

p′j .

Or equivalently, ∑
i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · p′j =
∑
j∈Bk

p′j .

Substituting every p′j as βj(p,X) · p̃k where chore j is in the component Dk we have,∑
i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · βj(p,X) · p̃k′ = p̃k .

Therefore, p̃k satisfies (12). Thus p̃ ∈ P̃ (β(p,X)).
Now we show the “only if” direction. So assume p′ ∈ P (β(p,X)). Then, by Claims 11, 12 and

13 we have that p′ ∈ P . Also by the definition of P (β(p,X)), we also have that there exists a vector
p̃ = 〈p̃1, . . . , p̃d〉 such that for all j ∈ [m] we have p′j = βj(p,X) · p̃k where Dk is the component in the
disutility graph containing chore j. So it just suffices to show that p̃k =

∑
j∈Bk p

′
j for all k ∈ [d]. To this

end, observe that, ∑
j∈Bk

p′j =
∑
j∈Bk

βj(p,X) · p̃k

= p̃k ·
∑
j∈Bk

βj(p,X)

= p̃k. (as β(p,X) satisfies 10)

We are now ready to show that r∗ ∈ P (β(p∗, X∗)) for some β(p∗, X∗) ∈ B(p∗, X∗). r∗ is the limit
of the sequence (rn)n∈N, p∗ is the limit of the sequence (pn)n∈N, and X∗ is the limit of the sequence
(Xn)n∈N . Since for all n, 〈rn, Y n〉 ∈ φ(〈pn, Xn〉), we can conclude that each rn ∈ P . Since the set
P is compact (and therefore closed), we have that r∗ ∈ P as well. Now, by Observation 17, it suffices to
show that for each chore j in component Dk, we have r∗j = βj(p

∗, X∗) ·
∑

j′∈Bk r
∗
j′ for some β(p∗, X∗) ∈

B(p∗, X∗). To this end, we first define a vector β(p∗, X∗) ∈ B(p∗, X∗) and then we show that indeed
r∗j = βj(p

∗, X∗) ·
∑

j′∈Bk r
∗
j′ .

• For all chores j ∈ Bk such that
∑

j′∈Bk qj′(p
∗, X∗) > 0, we set βj(p∗, X∗) = qj(p

∗, X∗)/(
∑

j′∈Bk
qj′(p

∗, X∗)).

• For all chores j ∈ Bk such that
∑

j′∈Bk qj′(p
∗, X∗) = 0 and

∑
j′∈Bk r

∗
j′ > 0, we set βj(p∗, X∗) =

r∗j/(
∑

j′∈Bk r
∗
j′).

• For all chores j ∈ Bk such that
∑

j′∈Bk qj′(p
∗, X∗) = 0 and

∑
j′∈Bk r

∗
j′ = 0, we set βj(p∗, X∗) =

1/|Bk|.

It can be verified that β(p∗, X∗) satisfies all the linear inequalities and equalities in 9, 10 and 11. There-
fore, we have β(p∗, X∗) ∈ B(p∗, X∗). Now it just suffices to show that r∗j = βj(p

∗, X∗) ·
∑

j′∈Bk r
∗
j′ . To

this end, observe that for all chores j ∈ Bk such that
∑

j′∈Bk qj′(p
∗, X∗) = 0, we already have that r∗j =

βj(p
∗, X∗) ·

∑
j′∈Bk r

∗
j′ : For a chore j ∈ Bk, where

∑
j′∈Bk r

∗
j′ > 0, we have r∗j =

(
r∗j/(

∑
j′∈Bk r

∗
j′)
)
·
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(
∑

j′∈Bk r
∗
j′) = βj(p

∗, X∗) · (
∑

j′∈Bk r
∗
j′). Similarly, for a chore j ∈ Bk where

∑
j′∈Bk r

∗
j′ = 0, we have

r∗j = 0 = (1/|Bk|) · 0 = βj(p
∗, X∗) · (

∑
j′∈Bk r

∗
j′).

Therefore, it only suffices to show r∗j = βj(p
∗, X∗) ·

∑
j′∈Bk r

∗
j′ for chores j, such that j ∈ Bk and∑

j′∈Bk qj′(p
∗, X∗) > 0. To this end, consider any chore j ∈ Bk, such that

∑
j′∈Bk qj′(p

∗, X∗) > 0. Let
δ =

∑
j′∈Bk qj′(p

∗, X∗) > 0 and let 0 < ε� δ/(2n ·m). Let S∗ ⊆ S be the set of all points 〈p′, X ′〉 ∈ S,
that have a distance of at most ε from 〈p∗, X∗〉. Observe that for any 〈p′, X ′〉 ∈ S∗ we have,∑

j′∈Bk

qj′(p
′, X ′) =

∑
j′∈Bk

(
p′j′ + max (1−

∑
i∈[n]

X ′ij′ , 0)
)

≥
∑
j′∈Bk

(
(p∗j′ − ε) + (max (1−

∑
i∈[n]

X∗ij′ , 0)− nε)
)

=
∑
j′∈Bk

(
p∗j′ + max (1−

∑
i∈[n]

X∗ij′ , 0)
)
−
∑
j′∈Bk

(n+ 1)ε

≥
∑
j′∈Bk

qj′(p
∗, X∗)− 2nmε

= δ − 2nmε

> 0.

Thus, for all 〈p′, X ′〉 ∈ S∗, we have
∑

j′∈Bk qj′(p
′, X ′) > 0, implying that for all β(p′, X ′) ∈ B(p′, X ′) we

have βj(p′, X ′) = qj(p
′, X ′)/(

∑
j′∈Bk qj′(p

′, X ′)). Since,
∑

j′∈Bk qj′(p
′, X ′) > 0 for all 〈p′, X ′〉 ∈ S∗,

we have that βj(p′, X ′) is well defined and continuous for all 〈p′, X ′〉 ∈ S∗. We define fj(r, p,X) =
rj −βj(p,X) ·

∑
j′∈Bk rj′ . Since βj(p,X) is well defined and continuous for all 〈p,X〉 ∈ S∗, we have that

fj(r, p,X) is well defined and continuous for all 〈p,X〉 ∈ S∗ and r ∈ P .
Now, consider any 0 < ε� δ/(2nm). Since the sequences (rn)n∈N and (〈pn, Xn〉)n∈N converge to r∗

and 〈p∗, X∗〉 respectively, there exists a n′(ε) ∈ N such that for all n > n′(ε), we have ||r∗ − rn||2 < ε
and ||〈p∗, X∗〉 − 〈pn, Xn〉||2 < ε. In that case, for all n > n′(ε), we have 〈pn, Xn〉 ∈ S∗. Therefore,
fj(r

n′(ε)+n, pn
′(ε)+n, Xn′(ε)+n) is well defined for all n ∈ N. We define a new sequence (hn)n∈N, such that

hn = fj(r
n′(ε)+n, pn

′(ε)+n, Xn′(ε)+n). Since fj(r, p,X) is well defined and continuous for all 〈p,X〉 ∈ S∗
and r ∈ P , and 〈pn′(ε)+n, Xn′(ε)+n〉 ∈ S∗ and rn

′(ε)+n ∈ P for all n ∈ N, we have that the limit
of the sequence (hn)n∈N is h∗ = fj(r

∗, p∗, X∗). Again, since rn ∈ P (β(pn, Xn)) for all n ∈ N, we
have by Observation 17 that hn = fj(r

n′(ε)+n, pn
′(ε)+n, Xn′(ε)+n) = r

n′(ε)+n
j − βj(pn

′(ε)+n, Xn′(ε)+n) ·∑
j′∈Bk r

n′(ε)+n
j′ = 0 for all n ∈ N. Therefore, the limit of the sequence (hn)n∈N is h∗ = 0. This

implies that fj(r∗, p∗, X∗) = 0, further implying that r∗j − βj(p∗, X∗) ·
∑

j′∈Bk r
∗
j′ = 0. Thus, we have

r∗j = βj(p
∗, X∗) ·

∑
j′∈Bk r

∗
j′ for all chores j, such that j ∈ Bk, where

∑
j′∈Bk qj′(p

∗, X∗) > 0.

Proving Y ∗ ∈ Xp∗: To show Y ∗ ∈ Xp∗ , we need to show that

1. Y ∗ ∈ X,

2. for all i ∈ Ak, we have Yij > 0 only if d(i, j) 6=∞,

3. for all i ∈ Ak, where
∑

j∈Bk p
∗
j > 0, we have Yij > 0 only if d(i,j)p∗j

≤ d(i,`)
p∗`

for all ` ∈ [m], and

4. for all i ∈ Ak, where
∑

j∈Bk p
∗
j > 0, we have

∑
j∈[m] Yij · p∗j =

∑
j∈[m]wi,j · p∗j for all i ∈ [n].

Since 〈rn, Y n〉 ∈ φ(〈pn, Xn〉) for all n, we have that Y n ∈ X for all n. Since X is compact (and
therefore closed), we have that Y ∗ ∈ X as well.
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We show part 2 by contradiction. Assume that there exists an i ∈ Ak, where Y ∗ij = δ > 0, and
d(i, j) = ∞. Since the sequence (Y n)n∈N converges to Y ∗, we know that for every ε > 0, there exists an
n′(ε) ∈ N be such that for n > n′(ε) we have |Y ∗ij − Y n

ij | < ε. Choosing a ε � δ, we can ensure that
|Y ∗ij − Y n

ij | < ε, implying that Y n
ij ≥ δ − ε > 0 for all n > n′(ε). Therefore Y n

ij > 0 for all n > n′(ε)
(while d(i, j) =∞) which contradicts the fact that Y n ∈ X.

We show part 3 by contradiction. Consider any agent i ∈ Ak, where
∑

`∈Bk p
∗
` > 0. Since

∑
`∈Bk p

∗
` >

0, the chore j such that d(i,j)
p∗j

is minimum has price p∗j > 0. So for contradiction, let us assume that

Y ∗ij′ = β > 0, and d(i,j′)
p∗
j′

> d(i,j)
p∗j

(1 + δ) for some δ > 0. Since the sequence (Y n)n∈N converges to Y ∗ and

pn converges to p∗, we know that for every ε > 0, there exists an n′(ε) ∈ N be such that for n > n′(ε) we
have |Y ∗ij − Y n

ij | < ε and |p∗j − pnj | < ε for all j ∈ [m]. For a sufficiently small ε > 0, we can ensure that

Y ∗ij′ ≥ β − ε > 0 and d(i,j′)
pn
j′

> d(i,j)
pnj

, contradicting the fact that Y n ∈ Xpn for all n > n′(ε).

Finally, we prove part 4 by contradiction. Assume that
∑

j∈[m]wi,j · p∗j −
∑

j∈[m] Y
∗
ij · p∗j = δ for some

non-zero δ. Since the sequence (Y n)n∈N converges to Y ∗ and pn converges to p∗, we know that for every
ε > 0, there exists an n′(ε) ∈ N be such that for n > n′(ε) we have |Y ∗ij−Y n

ij | < ε and |p∗j −pnj | < ε for all
j ∈ [m]. Therefore, by choosing a sufficiently small εwe can ensure that

∑
j∈[m]wi,j ·pnj−

∑
j∈[m] Y

n
ij ·pnj 6=

0, for all n > n′, which contradicts the fact that Y n ∈ Xpn for all n > n′(ε).

We are now ready to state the main result of this section

Theorem 18. Every instance I ∈ I admits a CE.

Proof. We defined a correspondence φ that satisfies properties P1, P2, P3 and P4 by Lemmas 10, 14, 15
and 16. By Lemma 5 we have that any correspondence that satisfies the properties P1, P2, P3 and P4

has a fixed point. Finally, by Lemma 6, any fixed point of this correspondence will correspond to CE in I .
Therefore, our correspondence φ has at least one fixed point and this fixed point corresponds to a CE.

Proof of Fact 1: Recall Fact 1.

Fact. Let Z ∈ Rn×n be a square matrix such that Zij ≥ 0 for all j 6= i (all the non-diagonal entries of Z
are non-negative) and

∑
i∈[n] Zij = 0 (column sums are zero), then there exists a vector t ∈ Rn≥0 such that∑

i∈[n] ti = 1 and Z · t = 0.

Proof. Let λ � max i,j∈[n](|Zij |). Let Z ′ = 1
λZ. Observe that every t that satisfies Z ′ · t = 0, also

satisfies Z · t = 0 and vice versa. Also, each entry in the matrix Z ′ has absolute value less than one. Let
Z ′′ = (Z ′ + I) where I is the identity matrix. Note that every entry in the matrix Z ′′ is non-negative. Also
every t that satisfies Z ′′ · t = t, also satisfies Z ′ · t = 0 and therefore also satisfies Z · t = 0 and vice versa.
From here on, we will be dealing with the following system of equations

Z ′′ · t = t . (16)

We first observe that the matrix Z ′′ is column stochastic: For all j ∈ [n], we have∑
i∈[n]

Z ′′ij =
∑
i∈[n]

(
1

λ
· Zij + Iij)

=
∑
i∈[n]

1

λ
· Zij + 1

= 0 + 1 (Column sums are zero in Z)

= 1 .
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Now, let ∆n =
{
r ∈ Rn≥0 |

∑
j∈[n] rj = 1

}
be the n dimensional simplex. Observe that the set ∆n is

non-empty, convex and compact. We first make a small claim.

Claim 19. Let r′ = Z ′′ · r. If r ∈ ∆n then r′ ∈ ∆n.

Proof. Since every entry in the matrix Z ′′ and every component of the vector r is non-negative, we also
have that every component of r′ is also non-negative: r′j ≥ 0 for all j ∈ [d]. Now observe that∑

j∈[n]

r′j = 1T · r′

= 1T · Z ′′ · r
= 1T · r (as Z ′′ is column stochastic)

=
∑
j∈[m]

rj = 1.

Thus, r′ ∈ ∆n.

We define f : ∆n → ∆n such that f(r) = Z ′′ ·r. Observe that f is also continuous. Thus, by Brouwer’s
fixed point theorem there is a t ∈ ∆n, such that f(t) = t or equivalently Z ′′ · t = t.

3 Complexity of Determining the Existence of CE

In this section, we show that determining whether an arbitrary instance of chore division admits a CE is
strongly NP-hard. In fact, we show that determining whether an instance admits a good approximation to
the CE in the Fisher model is strongly NP-hard. In this light, we formally define the problem of determining
an α-approximate CE in the Fisher model.

Definition 5 (α-CE in Chore Division in the Fisher Model). Given a set of agents A = {a1, a2, . . . , an},
chores B = {b1, b2, . . . , bm}, disutilities d(·, ·) and fixed earnings e(·), our goal is to find a price vector
p = 〈p(b1), p(b2), . . . , p(bm)〉 ∈ Rm≥0 and allocation X = 〈X1, X2, . . . , Xn〉, such that

• Every agent gets their optimal bundle: Xi ∈ OB i(p)
11.

• All chores are almost completely allocated: α ·
∑

i∈[n]w(ai, bj) ≤
∑

i∈[n]Xij ≤ 1
α ·
∑

i∈[n]w(ai, bj)
for all bj ∈ B.

We show that finding a (1112 + δ)-CE with chores for any δ > 0 in the Fisher model is strongly NP-hard.
This will imply that determining a (1112+δ)-CE in the exchange setting is also strongly NP-hard. Later, in this
section we also extend the method to show NP-hardness for finding a (1112 + δ)-CE even in the CEEI setting.
In particular, any polynomial time algorithm that determines whether an instance admits a (1112 + δ)-CE in
chore division in the Fisher model implies that 3-SAT is solvable in polynomial time.

We quickly recall the 3-SAT problem:

Problem 1. (3-SAT)
Given: A set of variables X = {x1, x2, . . . , xn} and a set of clauses C = {C1, C2, . . . , Cm} where each
clause is a disjunction of exactly three literals12.

11Recall that in the Fisher model, OB i(p) = argmin
Xi∈Fi(p)

di(Xi), where Fi(p) =
{
Xi ∈ Rm≥0 |

∑
j∈[m]Xij · p(bj) ≥ e(ai)

}
12A literal is a variable or the negation of a variable
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Find: An assignment A : X → {T, F} such that all the clauses are satisfied13 or output that no such
assignment exists.

Given any instance I = 〈X,C〉 of 3-SAT, we will create an instance E(I) of chore division such that
for any δ > 0, there exists an (1112 + δ)-CE in E(I) if and only if there exists an assignment A that satisfies
all the clauses in C in I . We first briefly sketch the intuition, before we move to the construction of the
gadgets required for our reduction.

Several Disconnected Equilibria. We sketch a very simple scenario that could arise in chore division in
the Fisher model: Consider an instance with two agents a1 and a2 with a fixed earning of one unit each. The
disutility values are given below where a1 has a disutility of 1 for b1 and 3 for b2, while a2 has a disutility
of∞ for b1 and 1 for b2.

b1 b2

a1 1 3

a2 ∞ 1

Let p = 〈p(b1), p(b2)〉 be an equilibrium price vector. Also, throughout this section we use the notation
MPBa to denote the minimum pain per buck bundle for agent a at the prices p: a chore b ∈ MPBa if and
only if d(a,b)p(b) ≤

d(a,b′)
p(b′) for all other chores b′ in the instance. Observe that this small instance exhibits exactly

two competitive equilibria:

• The first CE is when both p(b1) and p(b2) are set to 1. Note that only MPBa1 = {b1} and MPBa2 =
{b2}. Thus a1 earns her entire one unit of money from g1 and a2 earns her entire one unit of money
from g2.

• The second CE is when a1 earns from both b1 and b2. For this we set p(b1) to 1/2 and p(b2) to 3/2.
Note that MPBa1 = {b1, b2} and MPBa2 = {b2}. Under these prices, a2 earns her entire money by
doing 2/3 of b2, and a1 earns her money by doing all of b1 and 1/3 of b2.

Also, observe that there exists no CE at any other set of prices. This is a striking difference to the
scenario with only goods to divide, where all CE exists at a unique price vector. Now, let us introduce
another agent a3 and another chore b3 in the instance. Let us say that a3 has a fixed earning of one unit,
and both agents a1 and a2 have a disutility of∞ towards b3. We now discuss two scenarios that may arise
depending on a3’s disutility towards the chores

1. a3 has a disutility of 1 towards b3 and b2, and∞ towards b1.

2. a3 has a disutility of 1 towards b3, 1
2 towards b1 and∞ towards b2.

We will now show that, at a CE, in scenario 1, b2 /∈ MPBa1 and in scenario 2, b2 ∈ MPBa1 , suggesting
that depending on the valuation of a3, only one local equilibrium among the agents a1, a2 and chores b1
and b2 is admissible at a CE. Let p(b1), p(b2) and p(b3) denote the prices of chores at an equilibrium.
Note that since both a1 and a2 have a disutility of ∞ for b3, they only earn money from b1 and b2. Thus
p(b1) + p(b2) ≥ 2. Note that in both scenarios b3 should be in MPBa3 as a3 is the only agent with finite
disutility towards it. Now,

13A clause Cr = `1 ∨ `2 ∨ `3, where each `i is a literal, is satisfied if and only if A(`i) = T for at least one i ∈ [3].
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• In scenario 1: Since b3 ∈ MPBa3 , we have d(a3,b3)
p(b3)

≤ d(a3,b2)
p(b2)

or equivalently 1
p(b3)

≤ 1
p(b2)

, implying
that p(b3) ≥ p(b2). This in turn implies that

p(b2) + 2 ≤ p(b2) + (p(b1) + p(b2)) (as p(b1) + p(b2) ≥ 2)

≤ p(b1) + p(b2) + p(b3) (as p(b2) ≤ p(b3))

= 3.

Thus we have p(b2) ≤ 1, implying that p(b1) ≥ 1. Therefore, we can conclude that b2 /∈ MPBa1 as
the disutility to price ratio of b1 is strictly less than that of b2 for agent a1.

• In scenario 2: Since b3 ∈ MPBa3 , we have d(a3,b3)
p(b3)

≤ d(a3,b1)
p(b1)

, we have 1
p(b3)

≤ 1
2p(b1)

, implying that
p(b3) ≥ 2p(b1). This in turn implies that

2p(b1) + 2 ≤ 2p(b1) + (p(b1) + p(b2)) (as p(b1) + p(b2) ≥ 2)

≤ p(b1) + p(b2) + p(b3) (as 2p(b1) ≤ p(b3))

= 3.

Thus we have p(b1) ≤ 1
2 , implying that p(b2) ≥ 3

2 . Therefore, the disutility to price ratio of b2 is at
most that of b1 for agent a1 and thus we conclude that b2 ∈ MPBa1 .

Thus, as mentioned earlier, the valuations of the agents outside the local sub-instance, impose a specific
local equilibrium (among the two disjoint local equilibria) among the agents a1, a2 and chores b1 and b2.
We will now show that when there are n such local sub-instances (resulting in 2n disjoint equilibria), finding
the correct local equilibria becomes intractable.

3.1 Variable Gadgets

For each variable xi, we introduce two agents ai1 and ai2 and two chores bi1 and bi2. We set

d(ai1, b
i
1) = 1, d(ai1, b

i
2) = 3,

d(ai2, b
i
1) =∞, d(ai2, b

i
2) = 1.

See Figure 1 for an illustration. We set the earnings of both ai1 and ai2 to be one, i.e., e(ai1) = e(ai2) = 1.
Also, for all i ∈ [n] agents ai1 and ai2 have a disutility of ∞ for all other goods in the instance (that have
been introduced and will be introduced by clause gadgets in the next section).

3.2 Clause Gadgets

For each clause Cr = (`i ∨ `j ∨ `k), where `i is either the variable xi or its negation ¬xi, we introduce
four agents nri , n

r
j , n

r
k and nr, and three chores mr

i , m
r
j , and mr

k. We define the disutility of the agents as
follows: For each literal `i, if

• `i = xi, then,

d(nri , b
i
2) = 1 and d(nri ,m

r
i ) = ε

d(nr, bi2) = 1 and d(nr,mr
i ) = ε.

for some 0 < ε� 1, but 1
ε ∈ O(1).
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Figure 1: Illustration of the variable gadgets corresponding to xi, xj and xk, and the clause gadget Cr =
(xi∨¬xj ∨xk). The red squared nodes represent the agents and the green circle nodes represent the chores.
Only disutility values less than τ have been indicated. The disutility edges from agents in the variable
gadgets are outlined by blue edges. The disutility edges from agents nr` for ` ∈ {i, j, k} are outlined by
orange edges and the disutility edges from agent nr are outlined by black edges. Thicker disutility edges
have a higher disutility than the thinner disutility edges of the same color.

• `i = ¬xi, then,

d(nri , b
i
1) = 2

3 and d(nri ,m
r
i ) = 4ε

3

d(nr, bi1) = 2
3 and d(nr,mr

i ) = 4ε
3 .

For all other agents and chores pair, the disutility is∞. See Figure 1 for an illustration. We set e(nri ) =
e(nrj) = e(nrk) = ε and e(nr) = #(Cr) ·( ε2)+#(Cr) ·(ε)−ε′, where #(Cr) is the number of literals in Cr
that are not negations of variables and #(Cr) is the number of literals in Cr that are negations of variables
14, and ε′ < ε

2 (the exact value of ε′ will depend on δ 15 and will be made clear in the proof of Lemma 22).
We make a small claim about the total earning requirements for the agents nri , n

r
j , n

r
k and nr.

Claim 20. For each clause Cr = `i ∨ `j ∨ `k in I , we have e(nri ) + e(nrj) + e(nrk) + e(nr) = #(Cr) ·
(3ε2 ) + #(Cr) · (2ε)− ε′

Proof. We have,

e(nri ) + e(nrj) + e(nrk) + e(nr) = 3ε+ #(Cr) · ( ε2) + #(Cr) · (ε)− ε′

= (#(Cr) + #(Cr))ε+ #(Cr) · ( ε2) + #(Cr) · (ε)− ε′

= #(Cr) · (3ε2 ) + #(Cr) · (2ε)− ε′

We now show how to map any allocation in E(I) to an assignment of variables in I . Consider any
earning f under some prices p in E(I). If agent i does Xij amount of chore j, then f(i, j) = Xij · p(j).

If agent ai1 does some of chore bi2, i.e., f(ai1, b
i
2) > 0, then we set xi to F and if f(ai1, b

i
2) = 0, then we set

xi to T .
14This implies that #(Cr) + #(Cr) = 3
15Reminder to what δ is: recall that we are trying to show the hardness of determining whether an instance admits a ( 11

12
+ δ)-CE

or not.
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We now make some basic observations.

Observation 21. Let p be the prices of chores and f the the money allocation corresponding to a CE in
E(I). Consider any clause Cr = (`i ∨ `j ∨ `k). Then,

1. if `i = xi and f(ai1, b
i
2) > 0 then p(mr

i ) ≥ 3ε
2 , and

2. if `i = ¬xi and f(ai1, b
i
2) = 0, then p(mr

i ) ≥ 2ε.

Proof. We first prove part 1. If f(ai1, b
i
2) > 0, then bi2 ∈ MPBai1

, implying that d(ai1,b
i
2)

p(bi2)
≤ d(ai1,b

i
1)

p(bi1)
.

Therefore, we have that p(bi2) ≥
d(ai1,b

i
2)

d(ai1,b
i
1)
· p(bi1) = 3p(bi1). Also, note that since agents ai1 and ai2 have

finite disutility only for chores bi1 and bi2, they will only earn from chores bi1 and bi2. This implies that
p(bi1) + p(bi2) ≥ e(ai1) + e(ai2) = 2. Also, since p(bi2) ≥ 3p(bi1) we have that p(bi2) ≥ 3/2. Now, observe
that the only agents who have finite disutility towards mr

i are the agents nri and nr. Since `i = xi, both
nri and nr have a disutility of 1 towards bi2 and ε towards mr

i . Therefore, for mr
i to be in either MPBnri

or
MPBnr , we need ε

p(mri )
≤ 1

p(bi2)
≤ 2

3 . This implies that p(mr
i ) ≥ 3ε

2 .

The proof of part 2 is very similar. Note that agent ai1 has finite disutility only for chores bi1 and bi2. If
f(ai1, b

i
2) = 0, then she only earns by doing chore bi1, implying that p(bi1) ≥ e(ai1) = 1. Similar to the proof

in part 1, observe that the only agents who have finite disutility towards mr
i are the agents nri and nr. Since

`i = ¬xi, both nri and nr have a disutility of 2
3 towards bi1 and 4ε

3 towards mr
i . Therefore, for mr

i to be in
either MPBnri

or MPBnr , we need 4ε
3p(mri )

≤ 2
3p(bi1)

≤ 2
3 (as p(b1i ) ≥ 1). This implies that p(mr

i ) ≥ 2ε.

Lemma 22. If there is no satisfying assignment to the instance I = 〈X,C〉 of 3-SAT, then E(I) does not
admit any (1112 + δ)-CE for any δ > 0.

Proof. We prove by contradiction. Assume otherwise and let p be the equilibrium prices of chores and f be
the corresponding money allocation. Recall the mapping from an equilibrium allocation to the assignment
of variables: For each i ∈ [n] if f(ai1, b

i
2) > 0, then we set xi to F and if f(ai1, b

i
2) = 0, then we set xi to T .

Since I admits no satisfying assignment, there exists a clauseCr = `i∨`j∨`k which is unsatisfied. For every
literal `i ∈ Cr such that `i = xi, note that xi is F . Therefore, we have that f(ai1, b

i
2) > 0. This implies that

p(mr
i ) ≥ 3ε

2 (by Observation 21). Similarly for every literal `i in Cr such that `i = ¬xi, note that xi is T .
Therefore, we have that f(ai1, b

i
2) = 0, implying that p(mr

i ) ≥ 2ε (by Observation 21). We write the price
of chore mr

i , p(m
r
i ) as 3ε

2 + δ(mr
i ) if `i = xi and 2ε+ δ(mr

i ) if `i = ¬xi, where δ(mr
i ) is the deviation of

the price ofmr
i from its lower bound. Therefore, we have p(mr

i )+p(mr
j)+p(mr

k) = #(Cr) ·(3ε2 )+#(Cr) ·
(2ε) + δ(mr

i ) + δ(mr
j) + δ(mr

k). Note that the only agents who have finite disutility for chores mr
i , m

r
j and

mr
k are the agents nri , n

r
j , n

r
k and nr. However, by Claim 20, we have that e(nri ) + e(nrj) + e(nrk) + e(nr) =

#(Cr) · (3ε2 ) + #(Cr) · (2ε)− ε′ which is strictly less that the sum of prices of chores mr
i , m

r
j and mr

k. In
particular we have,

∑
h∈{i,j,k} p(m

r
h) − (

∑
h∈{i,j,k} e(n

r
h) + e(nr)) = ε′ +

∑
h∈{i,j,k} δ(m

r
h). Therefore,

there exists at least one chore mr
h′ such that the difference between the total price of the chore and the total

money earned from the chore by the agents is
ε′+

∑
h∈{i,j,k} δ(m

r
h)

3 ≥ ε′+δ(mr
h′ )

3 . Thus, the portion of chore
mr
h′ left undone is at least,

=
ε′ + δ(mr

h′)

3 · p(mr
h′)

≥
ε′ + δ(mr

h′)

3 · (2ε+ δ(mr
h′))

(as p(mr
h′) is either 3ε

2 + δ(mr
h′) or 2ε+ δ(mr

h′))

≥ ε′

3 · (2ε)
(as ε′ <

ε

2
).
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Since our reduction works for any choice of ε′ < ε
2 , we can choose an ε′ such that ε′

(6ε) >
1
12 − δ, implying

that we do not have a (1112 + δ)-CE, which is a contradiction.

Lemma 23. If there exists a satisfying assignment to the instance I = 〈X,C〉 of 3-SAT, then E(I) admits a
CE.

Proof. Consider any satisfying assignment in I . We now show how to construct the prices p and the money
allocation f corresponding to a CE. We will ensure that only the agents in the variable gadgets earn from the
chores in the variable gadgets and the agents in the clause gadgets earn only from the chores in the clause
gadgets.

Prices and Allocation of Chores in Variable Gadgets. For each variable xi,

• If xi = T , then we set p(bi1) = 1 and p(bi2) = 1.

• If xi = F , then we set p(bi1) = 1
2 and p(bi2) = 3

2 .

Since the agents in the variable gadgets have finite disutility only for some goods in the variable gadgets
(and have disutility of∞ for every good in the clause gadget) we can already define their optimal bundles
(MPB bundles). If xi = T , then observe that MPBai1

=
{
bi1
}

and MPBai2
=
{
bi2
}

. Thus agent ai1 earns 1

unit of money from doing chore bi1 entirely and agent ai2 earns 1 unit of money by doing chore bi2 entirely.
When xi = F , then observe that MPBai1

=
{
bi1, b

i
2

}
and MPBai2

=
{
bi2
}

. Thus agent ai1 earns 1 unit of
money from doing chore bi1 entirely and bi2 partly (1/3 of chore bi2) and agent ai2 earns 1 unit of money by
doing chore bi2 partly (2/3 of chore bi2). Now we make an immediate, simple observation:

Observation 24. When xi = T , then f(ai1, b
i
2) = 0 and when xi = F , we have f(ai1, b

i
2) > 0.

Observe that all the local sub-instances corresponding to the variable gadgets have cleared. It suffices to
show that there exists a CE for local sub-instances corresponding to the clause gadgets. We now look into
the agents and chores in the clause gadget.

Prices and Allocation of Chores in Clause Gadgets. Consider a clause Cr = `i ∨ `j ∨ `k. Therefore,
let Sr ⊆ {`i, `j , `k} be the literals that evaluate to T 16 and Ur ⊆ {`i, `j , `k} be the set of literals that
evaluate to F under the assignment X . Since X is a satisfying assignment, at least one of the literals will
evaluate to T and thus |Sr| ≥ 1 and |Ur| ≤ 2. Let #(Sr) and #(Ur) be the number of literals in Sr and Ur
respectively that are not negations of variables and similarly let #(Sr) and #(Ur) be the number of literals
that are negations of variables in Sr and Ur respectively. Let αr be a scalar such that

αr · (#(Ur) · 3ε2 + #(Ur) · (2ε)) = |Ur| · ε+ e(nr) (17)

We now set the prices of the chores in the clause gadgets. Consider any clause Cr = `i ∨ `j ∨ `k in I (with
Sr and Ur defined appropriately). For every literal `θ ∈ Sr, set,

p(mr
θ) =


ε if `θ = ¬xθ,
ε if `θ = xθ and Ur 6= ∅,
ε+ e(nr)

#(Sr)
if `θ = xθ and Ur = ∅.

For every `θ ∈ Ur, set
16A literal `i = xi evaluates to T if xi is set to T and the literal `i = ¬xi evaluates to T when xi is set to F .
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p(mr
θ) =

{
αr · (3ε2 ) if `θ = xθ
αr · (2ε) if `θ = ¬xθ.

We will now show that under the above prices for the chores in the clause gadgets, we can determine a
money flow where all the clause agents earn all of their money from their optimal bundles and all the clause
chores will be completed. We distinguish two cases, depending on whether Ur = ∅ or not,

Case Ur 6= ∅: In this case, we first observe that αr is strictly larger than 1:

Observation 25. We have well defined scalar αr > 1.

Proof. Since we are in the case where Ur 6= 0, we have #(Ur) · 3ε2 + #(Ur) · (2ε) > 0, thus αr is well
defined. For the claim of the lemma, it suffices to show that |Ur| · ε+ e(nr) > #(Ur) · 3ε2 + #(Ur) · (2ε).
To this end,

|Ur| · ε+ e(nr) = (#(Ur) + #(Ur)) · ε+ e(nr)

= (#(Ur) + #(Ur)) · ε+ #(Cr) · ε2 + #(Cr) · (ε)− ε′ . (18)

Since the literals that are not negations of variables in Ur are also not negations of variables in Cr we have
#(Ur) ≤ #(Cr). By a similar argument we also have #(Ur) ≤ #(Cr). Since |Ur| ≤ 2 we also have
#(Ur) + #(Ur) < #(Cr) + #(Cr), implying that either #(Ur) < #(Cr) or #(Ur) < #(Cr). Therefore,
we have that #(Cr) · ε2 + #(Cr) · (ε) ≥ #(Ur) · ε2 + #(Ur) · (ε) + ε

2 . Plugging this inequality in (18), we
have

|Ur| · ε+ e(nr) ≥ (#(Ur) + #(Ur)) · ε+ #(Ur) · ε2 + #(Ur) · (ε) + ε
2 − ε

′

> (#(Ur) + #(Ur)) · ε+ #(Ur) · ε2 + #(Ur) · (ε) (as ε′ < ε
2)

= #(Ur) · 3ε2 + #(Ur) · (2ε) .

We will now characterize the optimal bundles (MPB chores) for each agent under the set prices.

Observation 26. For each literal `θ ∈ Sr, we have mr
θ ∈ MPBnrθ

.

Proof. We consider the cases, whether the `θ = xθ or `θ = ¬xθ.

• `θ = xθ: Note that the only other chore (other than mr
θ) for which agent nrθ has finite disutility is

chore bθ2. Since `θ ∈ Sr, this means that xθ = T and therefore we have p(bθ2) = 1 (the way we
assigned the prices to the chores in the variable gadgets). Now observe that,

d(nrθ,m
r
θ)

p(mr
θ)

=
ε

ε

= 1

=
d(nrθ, b

θ
2)

p(bθ2)
.

Therefore mr
θ ∈ MPBnrθ

.

30



• `θ = ¬xθ: Note that the only other chore (other than mr
θ) for which agent nrθ has finite disutility is

chore bθ1. Since `θ ∈ Sr, this means that xθ = F and therefore we have p(bθ1) = 1
2 (the way we

assigned the prices to the chores in the variable gadgets). Now observe that,

d(nrθ,m
r
θ)

p(mr
θ)

=
4ε

3ε

=
4

3

=
2

3 · 12

=
d(nrθ, b

θ
1)

p(bθ1)
.

Therefore, mr
θ ∈ MPBnrθ

.

This implies that for all literals `θ in Sr, the agent nrθ will earn her entire money of ε by doing the chore
`θ entirely. Therefore, now we only need to look at the agents nrθ and chores mr

θ where `θ ∈ Ur. To this end
we observe that,

Observation 27. For each literal `θ ∈ Ur, we have mr
θ ∈ MPBnrθ

and mr
θ ∈ MPBnr .

Proof. We first show that mr
θ ∈ MPBnrθ

. We make a distinction based on whether `θ = xθ or `θ = ¬xθ.

• `θ = xθ: In this case we have p(mr
θ) = αr · (3ε2 ). Note that the only other chore (other than mr

θ) for
which agent nrθ has finite disutility is chore bθ2. Since `θ ∈ Ur, this means that xθ = F and therefore
we have p(bθ2) = 3

2 (the way we assigned the prices to the chores in the variable gadgets). Now
observe that,

d(nrθ,m
r
θ)

p(mr
θ)

=
1

αr
· ε3ε

2

=
1

αr
· 2

3
(19)

=
1

αr
·
d(nrθ, b

θ
2)

p(bθ2)

<
d(nrθ, b

θ
2)

p(bθ2)
. (as αr > 1 by Observation 25)

• `θ = ¬xθ: In this case we have p(mr
θ) = αr · (2ε). Note that the only other chore (other than mr

θ)
for which agent nrθ has finite disutility is chore bθ1 (the way we assigned the prices to the chores in the
variable gadgets). Since `θ ∈ Ur, this means that xθ = T and therefore we have p(bθ1) = 1. Now
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observe that,

d(nrθ,m
r
θ)

p(mr
θ)

=
1

αr
· 4ε

3 · 2ε

=
1

αr
· 2

3
(20)

=
1

αr
·
d(nrθ, b

θ
1)

p(bθ1)

<
d(nrθ, b

θ
1)

p(bθ1)
. (as αr > 1 by Observation 25)

Thus, in both cases we have mr
θ ∈ MPBnrθ

.
We will now show that mr

θ ∈ MPBnr as well. We do this by showing that the disutility to price ratio
of the chores mr

θ, when `θ ∈ Ur, is minimum for the agent nr. To this end, first crucially observe that

from (19) and (20), irrespective of whether `θ = xθ or `θ = ¬xθ, we have d(nrθ,m
r
θ)

p(mrθ)
= 1

αr
· 23 . Also, note

that the disutility profile agent nr has for chore mr
θ and the chores in the variable gadget of xθ (bθ1 and bθ2) is

identical to the disutility profile of agent nrθ for the same set of chores. Therefore, for all `θ ∈ Ur we have
d(nr,mrθ)

p(mrθ)
= 1

αr
· 23 (irrespective of whether `θ = xθ or `θ = ¬xθ) which is also strictly less than both d(nr,bθ2)

p(bθ2)

and d(nr,bθ1)

p(bθ1)
. We now look at disutility to price ratio that agent nr has for chores in Sr. Observe that for all

`β ∈ Sr we have p(mr
β) = ε and d(nr,mr

β) ≥ ε (as the disutility is ε if `β = xβ and is 4ε
3 if `β = ¬xβ

). This implies that for all `β ∈ Sr we have
d(nr,mrβ)

p(mrβ)
≥ 1 > 2

3 >
1
αr
· 23 (as αr > 1 by Observation 25).

Therefore, the disutility to price ratio of the chores mr
θ, when `θ ∈ Ur, for agent nr is 1

αr
· 23 which is at

most the disutility to price ratio of all the chores for which nr has finite disutility . Therefore, we have⋃
`θ∈Ur m

r
θ ⊆ MPBnr .

Now that we have identified the MPB chores for all the agents in the clause gadgets, we are ready to
show the money flow allocation. We set

f(nrθ,m
r
θ) = ε (for all `θ ∈ Sr)

f(nr,mr
θ) = p(mr

θ)− ε . (for all `θ ∈ Ur)

All agents spend on their corresponding MPB chores. Observe that for all `θ ∈ Sr, the agents nrθ earn their
money of ε by doing chore mr

θ completely. Now, for all `θ ∈ Ur, the agents nrθ earn their money of ε by
doing chore mr

θ partially. The agent nr earns her entire money by completing whatever is left of the chores
in
⋃
`θ∈Ur m

r
θ. It only suffices to show that agent nr earns exactly e(nr). To this end, we observe that the

total money earned by nr is

∑
`θ∈Ur

f(nr,mr
θ) =

∑
`θ∈Ur

(p(mr
θ)− ε)

= αr · (#(Ur) · 3ε2 + #(Ur) · (2ε))− |Ur| · ε
= e(nr) . (by (17))

Therefore, we have an allocation where the agents in the corresponding variable gadgets earn their
money by completing the chores in the variable gadgets and the agents in the clause gadget earn their entire
money by completing the chores in the clause gadgets. This concludes the proof for the case Ur 6= ∅.
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Case Ur = ∅: In this case we have that all the literals in the clause Cr belongs to the set Sr. Therefore,
for all the literals `θ occurring in Cr, we have,

p(mr
θ) =

{
ε if `θ = ¬xθ,
ε+ e(nr)

#(Sr)
if `θ = xθ

Like earlier, we will identify the MPB chores for all the clause gadget agents and then will outline a money
flow allocation where every agent earns all her money and all the chores are completed. We first look into
the agents nrθ. Very similar to Observation 26, we can claim thatmr

θ ∈ MPBnrθ
with a very similar argument

as the one used in the proof of Observation 26: The agent nrθ has finite disutility only for chores mr
θ, b

θ
2 if

`θ = xθ, and only for chores mr
θ and bθ1 if `θ = ¬xθ, and the price of the chore p(mr

θ) is at least ε (it is more
if `θ = xθ), while the prices of chores b1θ and b2θ are the same as in Observation 26.

Now we look into the agent nr. Since the disutility profile of agent nr is identical to that of nrθ, when
restricted to chores bθ1, bθ2 and mr

θ, we can conclude that the disutility to price ratio of mr
θ for nr is at most

that of chores bθ1 and bθ2. Now observe that the disutility to price ratio of all chores mr
θ for nr where `θ = xθ

is d(nr,mrθ)

p(mrθ)
= ε

p(mrθ)
≤ 1 (as p(mr

θ) = ε + e(nr)
#(Sr)

), while the disutility to price ratio all chores mr
θ for nr

where `θ = ¬xθ is d(nr,mrθ)

p(mrθ)
= 4ε

3p(mrθ)
> 1 (as p(mr

θ) = ε). Since nr has finite disutility only for the
chores in the clause gadget of Cr and the chores in the corresponding variable gadgets, we can claim that⋃
{θ|`θ=xθ}m

r
θ ⊆ MPBnr . Now, that we have identified the MPB chores for the agents in the clause gadget,

we outline a money flow,

f(nrθ,m
r
θ) = ε (for all `θ)

f(nr,mr
θ) = p(mr

θ)− ε . (for all `θ = xθ)

All the agents spend on their corresponding MPB chores. Observe that for all `θ, the agents nrθ earn their
entire money of ε by doing chore mr

θ (partially if `θ = xθ and completely when `θ = ¬xθ). The agent nr

earns her entire money by completing whatever is left of the chores in
⋃
{θ|`θ=xθ}m

r
θ. It only suffices to

show that agent nr earns exactly e(nr). To this end, we observe that the total money earned by nr is∑
{θ|`θ=xθ}

f(nr,mr
θ) =

∑
{θ|`θ=xθ}

(p(mr
θ)− ε)

= #(Sr) ·
(
ε+

e(nr)

#(Sr)
− ε
)

= e(nr).

Therefore, we have an allocation where the agents in the variable gadgets earn their money by completing
the chores in the variable gadgets and the agents in the clause gadgets earn their entire money by completing
the chores in the clause gadgets. This concludes the proof for the case Ur = ∅.

This brings us to the main result of this section.

Theorem 28. Determining an (1112 + δ)-CE, for any δ > 0, in chore division in the Fisher model is strongly
NP-hard.

Proof. Given any instance I = 〈X,C〉 of 3-SAT, in polynomial time we can construct an instance E(I)
of chore division comprising of all variable gadgets and clause gadgets. Also, observe all the entries in the
disutility matrix d(·, ·) and the money vector e(·) are constants (Thus all input parameters can be expressed
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with polynomial bit size in unary notation). Lemma 22 implies that we have a (1112 + δ)-CE only if I is
satisfiable and Lemma 23 implies that if I is satisfiable, then E(I) admits a CE (and thus also a (1112 + δ)-
CE).

Remark 29. Note that every instance of chore division in the Fisher model 〈A,B, d(·, ·), e(·)〉, where e(a)
is an integer for all a ∈ A, can be transformed into an instance I ′ = 〈A′, B, d′(·, ·)〉 of chore division in
the CEEI model (where e(a) = 1 for all a ∈ A′) by creating e(a) many identical copies (having the exact
same disutility profile) of the agent a ∈ A (the good set remains unchanged): Every α-CE in I ′ will also
be an α-CE in I . Observe that in our instance E(I), we can scale the earning functions of all the agents
by some large scalar γ(ε, ε′) to make the earnings of the agents integral. Again, since e(a) ∈ O(1) and
1
ε ,

1
ε′ ∈ O(1), we have |A′| = O(|A|) and all the input parameters of A′ (all entries in the disutility matrix

d′(·, ·)) can be expressed with polynomial bit size in unary notation. Therefore, finding an (1112 + δ)-CE, for
any δ > 0, in chore division in the CEEI model is also strongly NP-hard.
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