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Abstract. As a result of some important works [19,6,3,10,5], the com-
plexity of 2-player Nash equilibrium is by now well understood, even
when equilibria with special properties are desired and when the game is
symmetric. However, for multi-player games, when equilibria with spe-
cial properties are desired, the only result known is due to Schaefer and
Štefankovič [22]: that checking whether a 3-player Nash Equilibrium (3-
Nash) instance has an equilibrium in a ball of radius half in l∞-norm is
ETR-complete, where ETR is the class Existential Theory of Reals.

Building on their work, we show that the following decision versions
of 3-Nash are also ETR-complete: checking whether (i) there are two
or more equilibria, (ii) there exists an equilibrium in which each player
gets at least h payoff, where h is a rational number, (iii) a given set of
strategies are played with non-zero probability, and (iv) all the played
strategies belong to a given set.

Next, we give a reduction from 3-Nash to symmetric 3-Nash, hence re-
solving an open problem of Papadimitriou [18]. This yields ETR-complet-
eness for symmetric 3-Nash for the last two problems stated above as
well as completeness for the class FIXPa, a variant of FIXP for strong
approximation. All our results extend to k-Nash, for any constant k ≥ 3.

1 Introduction

Nash equilibrium (NE) is arguably the most important and well-studied solu-
tion concept within game theory and understanding its complexity has led to an
impressive theory which was discovered largely over the last decade. We denote
by k-Nash the problem of computing a NE in a k-player game for a constant
k. For the case of 2-Nash, the seminal results of Daskalakis, Goldberg and Pa-
padimitriou [6], and Chen and Deng [3] exactly characterized the complexity
of this problem, namely it is PPAD-complete. This leads us to another basic
question: of finding a k-Nash solution that satisfies special properties, e.g., has a
payoff of at least h for each player. These questions were first studied by Gilboa
and Zemel [10]: they considered 2-Nash under numerous special properties and
showed them all to be NP-complete [5]. Thus the complexity of the 2-player case
is very well understood.
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Although the 2-player case is the most classical and well studied case, it is
also important to study the complexity of the multi-player, especially in the
context of new applications arising on the Internet and other large networks
where multiple players are locked in strategic situations. Indeed there has been
much activity on this front, e.g., see [20,11,1], but the picture is not as clear
as the 2-player case. A fundamental difference between 2-Nash and k-Nash, for
k ≥ 3, is that whereas the former always admits an equilibrium that can be
written using rational numbers [12], the latter require irrational numbers in
general, as shown by Nash himself [15] (we will assume that all numbers in the
given instance are rational). It is easy to see that in the latter case, equilibria
are algebraic numbers. This difference makes the multi-player case much harder.

Daskalakis, Goldberg and Papadimitriou [6], showed that for k-player games,
k ≥ 3, finding an ε-approximate Nash equilibrium is PPAD-complete. The com-
plexity of exact equilibrium was resolved by Etessami and Yannakakis [7], who
showed this case to be complete for their class FIXP. How about the complexity
of finding a k-Nash solution that satisfies special properties? Due to the inherent
difficulty of dealing with irrational numbers, this problem remained open until
2009, when Schaefer and Štefankovič [22] formally defined class Existential The-
ory of Reals (ETR), and showed that checking if a 3-player game has a NE in
which every strategy is played with probability at most 0.5 (InBox) is ETR-
complete. ETR is the class of “yes” instances of existentially quantified formulas
with bases {+,−, ∗,∧,∨,=, <,>} on real numbers; we note that this class was
informally known and used earlier than [22], e.g., see [2].

Our first set of results extend ETR-completeness to NE computation with a
number of special properties in ≥ 3 player games: (i) checking if a game has more
than one NE (NonUnique). NE where, (ii) each player gets at least h payoff
(MaxPayoff), (iii) a given set of strategies are played with +ve probability
(Subset), or (iv) all the played strategies belong to a given set (Superset).

Our second set of results deal with symmetric games. Symmetry arises nat-
urally in numerous strategic situations and with the growth of the Internet,
on which typically users are indistinguishable, such situations are only becom-
ing more ubiquitous. In a symmetric game all players participate under identical
circumstances, i.e., strategy sets and payoffs. Thus the payoff of player i depends
only on the strategy, s, played by her and the multiset of strategies, S, played by
the others, without reference to their identities. Furthermore, if any other player
j were to play s and the remaining players S, the payoff to j would be identical
to that of i. A symmetric Nash equilibrium (SNE) is a NE in which all players
play the same strategy. Nash [15], while providing game theory with its central
solution concept, also defined the notion of a symmetric game and proved, in a
separate theorem, that such games always admit a symmetric equilibrium.

A simple reduction is known from 2-Nash to symmetric 2-Nash, and it shows
that the latter is also PPAD-complete. The questions studied by Gilboa and
Zemel [10] for 2-player games were studied by Conitzer and Sandholm [5] for
symmetric games and were shown to be NP-complete. On the other hand, no
reduction is known from 3-Nash to symmetric 3-Nash. Indeed, after giving the
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reduction from 2-Nash to symmetric 2-Nash, Papadimitriou [18] states, “Amaz-
ingly, it is not clear how to generalize this proof for three player games!”

Our second set of results deals with symmetric k-player games, for k ≥ 3. We
first give a reduction from 3-Nash to symmetric 3-Nash, hence settling the open
problem of [18]. This also enables us to show that symmetric 3-Nash is complete
for the class FIXPa, Strong Approximation FIXP, which is a variant of FIXP
that is meant for the Turing machine model. It also yields ETR-completeness
for Superset and Subset in such games. Once the 3-player case is settled, we
prove analogous results for symmetric k-player games, for k > 3.

[9] gave a dichotomy for NE, showing a qualitative difference between 2-
Nash and k-Nash along three different criteria, see Table 1. The results of this
paper add a fourth criterion to this dichotomy, namely complexity of decision
problems. Additionally, we get an analogous dichotomy for symmetric NE, see
Table 2. Results of current paper are indicated by CP in the tables.

Table 1.

2-Nash k-Nash, k ≥ 3

Nature of solution Rational [12] Algebraic; irrational example [15]

Complexity PPAD-complete [16,6,4] FIXP-complete [7]

Practical algorithms Lemke-Howson [12] ?

Decision problems NP-complete [10,5]
ETR-complete: [22]
CP (Theorems 13, 14)

Table 2.

Symmetric 2-Nash Symmetric k-Nash, k ≥ 3

Nature of solution Rational [12]
Algebraic; irrational example
CP together with [15]

Complexity PPAD-complete [16,6,4] FIXPa-complete: CP (Theorem 24)

Practical algorithms Lemke-Howson [12,21] ?

Decision problems NP-complete [5] ETR-complete: CP (Theorems 23)

1.1 Technical Overview

We first give the main idea behind our reduction from 3-Nash to symmetric 3-
Nash (Theorem 19). We will reduce the given game (A,B,C), where each tensor
is m×n×p, to a symmetric game, D, of dimension l× l× l, where l = m+n+p
(see Section 2.1 for the description of (symmetric) games). In this game, under
each symmetric NE, the strategy of each player can be decomposed into three
vectors, say x,y, z, of dimension m,n, p, respectively. An essential condition for
recovering a Nash equilibrium for the original game (A,B,C) is that each of these
three vectors be non-zero; this is also the most difficult part of the reduction.

To achieve this we construct a 3 × 3 × 3 symmetric game G all of whose
symmetric NE are of full support, even though it is only partially specified (see
(4)). We “blow up” G to derive D, which is l× l× l, and the unspecified entries
of G create room where tensors A,B,C are “inserted”. Now, if (x,y, z) is a
symmetric NE ofD then so is (

∑
i xi,

∑
j yj ,

∑
k zk) ofG. As a result, each vector,

x,y, z 6= 0. Next we show that if these vectors are scaled to probability vectors,
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they form a NE for (A,B,C). Additional arguments yield ETR-completeness for
Subset and Superset for symmetric k-Nash (Theorems 20 and 21).

Next we give idea for showing that symmetric 3-Nash is complete for the
class FIXPa (Theorem 22), Strong Approximation FIXP, which is a variant of
FIXP that is meant for the Turing machine model. Note that we are unable
to show that symmetric 3-Nash is complete for the class FIXP itself, since we
don’t see how to express the solution to the given instance as a rational linear
projection of the solution of the reduced instance.

Under FIXPa, given an instance I and a rational ε > 0, we need to compute a
vector x that is within (additive) ε distance from some solution, i.e., ∃x∗ ∈ Sol(I)
such that |x∗−x|∞ ≤ ε, in time polynomial in size[I] and log(1/ε). In the above
reduction, obtaining a solution of (A,B,C) involves e.g., dividing x by

∑
i xi.

If the latter is very small, this may give us a vector that is very far away from
a solution of (A,B,C), even though x may be close to a solution of D.

We get around this problem by a small change in the above reduction, namely,
we need to multiply the tensors A,B,C by a small constant ε′ before they are
“inserted” at the appropriate places in G′ to get symmetric game D. This ensures
that (

∑
i xi,

∑
j yj ,

∑
k zk) is approximately (1/3, 1/3, 1/3). As a result, given a

point close to a solution ofD, we can get a point “close” to a solution of (A,B,C).

Next, we describe how we show ETR-completeness for the four decision prob-
lems, mentioned in the previous section, for k-Nash. To show hardness in case
of 3-players, we reduce InBox, which is known to be ETR-complete for 3-Nash
[22], to each of MaxPayoff, Subset and Superset, and then from MaxPayoff
to NonUnique. Hardness for the k-Nash, k > 3, follows since 3-Nash reduces
to k-Nash trivially by introducing dummy players. To show containment in ETR
we give a Non-linear complementarity problem (NCP) formulation that exactly
captures NE of a given game (Theorems 25 and 26).

Next, we briefly explain the reduction from InBox to MaxPayoff for the
2-player case (see Section 3.1 for details); 3-player case is an extension of it
(Appendix C.1). Let the given game be represented by two payoff matrices (A,B)
of dimension m×n, one for each player. The InBox problem is to check if it has
a NE in which all strategies are played with at most 0.5 probability. We reduce
it to checking if another game (C,D) has a NE in which every player gets payoff
at least h > 0 (MaxPayoff). Wlog we can assume that A,B > 0.

We construct m(n + 1) × n(m + 1) matrices C and D, where the top-left
block is set to A + h and B + h respectively (see Figure 1). This ensures that
if each player gets payoff h at a NE, then strategies from this block are played
with non-zero probability, and normalizing them gives a NE of (A,B). The latter
follows since NE set remains invariant under additive scaling of payoffs. In order
to retrieve a NE in 0.5 ball, we ensure that if any of these strategies is (relatively)
played with more than 0.5 probability then a sequence of deviations leads to both
players playing only among their last mn strategies where payoff is zero (< h).

In particular suppose the second player plays y in the top-left block. The
last mn strategies of the row player are divided in to n blocks of size m, one
for each yj , j ≤ n such that if yj > 0.5 then best response of the first player
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is to deviate to jth block. The payoff of the second player is set to −1 in these
blocks, so then yj fetches −1 and second player is forced to deviate to her last
mn strategies where both get zero. Similarly for the first player.

Due to space constraints, in next few pages we present overview of our two
results (i) ETR-hardness for MaxPayoff, Subset and Superset, through re-
duction from InBox, (ii) reduction from 3-Nash to symmetric 3-Nash, and ETR-
hardness of Subset and Superset for symmetric 3-Nash.

2 Preliminaries

In this section we formally define the (symmetric) k-Nash problem, and their
decision problems. Further, we discuss the complexity classes ETR and FIXP.
Notations: All vectors are in bold-face letters, and ith coordinate of vector x is
denoted by xi, and x−i denotes the vector x with ith coordinate removed. 1 and 0
represent all ones and all zeros vector respectively of appropriate dimension. For
integers k < l, x(k : l) = (xk, xk+1, . . . , xl). We use [n] to denote set {1, . . . , n}
and [k : l] to denote {k, k + 1, . . . , l}. If x is of m dimension, then by σ(x) we
mean

∑m
i=1 xi, and η(x) = x/σ(x). Concatenation of vectors x and y is denoted

by (x|y). Given a matrix A and h ∈ R, A+h denotes the matrix A with h added
to each of its entries. Further, A(i, :) is its ith row and A(:, j) is its jth column.

2.1 (Symmetric) k-Nash

For a given k-player game let Si, i ∈ [k] be the set of pure strategies of player i,
and let S = ×iSi. The payoffs of player i can be represented by a k-dimensional
tensor Ai, such that Ai(s) denotes the payoff she gets when s ∈ S is played.
Players may randomize among their strategies. Let ∆i denote the set of mixed
strategy profiles of player i, and let ∆ = ×i∆i. Expected payoff of player i from
x = (x1, . . . ,xk) ∈∆ is πi(x) =

∑
s∈S(Πi∈[k]x

i
si)Ai(s).

Definition 1. (Nash Equilibrium (NE) [15]) x ∈ ∆ is said to be a NE if no
player gains by unilateral deviation. Formally, ∀i, ∀x′ ∈ ∆i, πi(x) ≥ πi(x′,x−i).

Let πi(s,x
−i) denote the payoff i receives when she plays s ∈ Si and others

play as per x−i. It is easy to see that, x is a NE iff [15],

∀i ∈ [k], ∀s ∈ Si, xis > 0 ⇒ πi(s,x
−i) = max

t∈Si

πi(t,x
−i) (1)

Symmetric k-Nash: In a symmetric game the players are indistinguishable.
Their strategy sets are identical (S) and payoffs are symmetric represented by
one tensor A. For a player, the payoff she gets by playing s′ ∈ S, when others are
playing s ∈ Sk−1, is A(s′, s). Further, who is playing what in s does not matter.
Formally, A satisfies A(s′, s) = A(s′, sτ ) for all permutations τ of (1, . . . , k− 1),
where sτ is the corresponding permuted vector.

A profile x ∈∆ is called symmetric if xi = xj , ∀i, j, thus one vector x ∈ ∆
is enough to denote a symmetric profile. At a symmetric strategy profile all the
players get the same payoff, and we denote it by π(x). The problem of computing
symmetric NE (SNE) of a symmetric game is called symmetric k-Nash.
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Note that description of a (symmetric) k-player game takes O(kmk) space,
where m = maxi |Si|, which is exponential in m and k. To keep it polynomial,
we consider k as a constant. Further, wlog (A1, . . . , Ak) > 0 because adding a
constant to the tensors does not change the set of NE.

2-Nash: The payoff tensors in case of 2-player game are matrices, say (A,B),
A for player one and B for player two. If the first player plays i and second plays
j, then their respective payoff are Aij and Bij . Game is said to be symmetric if
B = AT . A mixed strategy is (x,y) ∈ ∆1 ×∆2, and respective payoffs at such
a strategy are xTAy and xTBy. The NE characterization of (1) reduces to:

∀i ∈ S1, xi > 0⇒ (Ay)i = max
k∈S1

(Ay)k; ∀j ∈ S2, yj > 0⇒ (xTB)j = max
k∈S2

(xTB)k (2)

3-Nash: It is the k-Nash problem with 3 players. Such a game can be represented
by 3-dimensional tensors (A,B,C); A for player one, B for player two, and C
for player three. If player one plays i, two plays j and three plays k, then their
respective payoffs are Aijk, Bijk, and Cijk. If the game is symmetric then we
have Aijk = Aikj = Bjik = Bkij = Cjki = Ckji. A mixed strategy is denoted by
(x,y, z) ∈ ∆1 ×∆2 ×∆3. Thus NE characterization of (1) reduces to:

∀i ∈ S1, xi > 0 ⇒ ∑
j,k Aijkyjzk = maxl∈S1

∑
j,k Aljkyjzk

∀j ∈ S2, yj > 0 ⇒ ∑
i,k Bijkxizk = maxl∈S2

∑
i,k Bilkxizk

∀k ∈ S3, zk > 0 ⇒ ∑
i,j Cijkxiyj = maxl∈S3

∑
i,j Cijlxiyj

(3)

Decision Problems: Computational complexity of numerous decision problems
have been studied for 2-Nash and 3-Nash [10,5]. Here are some interesting ones:

– NonUnique: If there exists more than one NE.
– MaxPayoff: Given a rational number h, if there exists a NE where every

player gets payoff at least h.
– Subset: Given sets Ti ⊂ Si, ∀i ∈ [1 : k], if there exists a NE where every

strategy in Ti is played with positive probability by player i.
– Superset: Given sets Ti ⊂ Si, ∀i ∈ [1 : k], if there exists a NE where all

the strategies outside Ti are played with zero probability by player i.
– InBox: If there is a NE where every strategy is played with ≤ 0.5 probability.

All but last have been shown to be NP-complete in case of 2-Nash [10,5], and
the last one is shown to be ETR-complete in case of 3-Nash [22]. In this paper,
we show ETR-completeness for the first four decision problems for k-Nash, and
for third and fourth for symmetric k-Nash.

2.2 Existential Theory of Reals (ETR)

In order to capture decision problems arising in existential theory of reals (ETR),
Schaefer and Štefankovič [22] defined complexity class ETR as follows: An in-
stance I of class ETR consists of a sentence of the form,

(∃x1, . . . , xn) φ(x1, . . . , xn),

where φ is a quantifier-free (∧,∨,¬)-Boolean formula over the predicates
(sentences) defined by signature {0, 1,−1,+, ∗, <,≤,=} over variables that take
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real values. The question is if the sentence is true. The size of the problem is
n + size(φ), where n is the number of variables and size(φ) is the minimum
number of signatures needed to represent φ (we refer the reader to [22] for more
details on ETR, and its relation with other classes like PSPACE). Schaefer and
Štefankovič showed that for 3-Nash, problem InBox is ETR-complete.

2.3 The class FIXP and its variant FIXPa

Etessami and Yannakakis [7] defined the class FIXP to capture complexity of
the exact fixed point problems with algebraic solutions. A FIXP problem is to
find a fixed-point of a function F : D → D over a convex, compact domain
D. The function is given by an arithmetic circuit C with {min,max,+,−, ∗, /}
operations, rational constants, and n input/output. Size of C is n + # gates+
size(constants). Given λ ∈ D to C as an input, all its gates are well defined.

Fixed-points of F may be irrational. To remain faithful to Turing machine
computation, Etessami and Yannakakis [7] defined a discrete class FIXPa.

(Strong) Approximation FIXPa: Given an instance I and a rational ε > 0,
compute a vector x that is within (additive) ε distance from some solution, i.e.,
∃x∗ ∈ Sol(I) such that |x∗−x|∞ ≤ ε, in time polynomial in size[I] and log(1/ε).

Theorem 2. [7] Given a 3-player game (A1, A2, A3), computing its NE is FIXP-
complete. The corresponding (Strong) Approximation is complete for FIXPa.

3 k-Nash: ETR-completeness for Decision Problems

In this section we show that MaxPayoff, Subset, Superset and NonUnique
are ETR-hard in k-player games, for any constant k ≥ 3; refer Appendix A for
containment in ETR. It suffices to show the results for 3-Nash, as a 3-player game
can be reduced to a k-player game trivially by adding k−3 dummy players, with
one strategy each. To show hardness for MaxPayoff, Subset and Superset we
reduce from InBox, and for NonUnique we reduce from MaxPayoff.

3.1 InBox to MaxPayoff, Subset and Superset

To convey the main ideas, we first describe the reduction in 2-player games and
later generalize it to the 3-player case (in Appendix C). We show the reduction
from InBox to MaxPayoff, and from the intermediate lemmas, reduction to
Subset and Superset will follow. Let the given two player game be represented
by m× n dimensional payoff matrices (A,B) > 0.

For a ≥ 0, let Ba = [0, a]m+n be a ball of radius a at origin in l∞ norm.
We will construct another game (C,D), with m(n+ 1)× n(m+ 1)-dimensional
matrices, and show that it has a NE where each player gets at least h > 0 payoff
(MaxPayoff) if and only if the game (A,B) has a NE in ball B0.5 (InBox).
First we define a couple of notations required for the construction.

Definition 3. Let i and j be integers where i ∈ [m] and j ∈ [n], and h be a real
number. We define the following operators:

A(i,:)+h : matrix A with h added to the entries in its ith row.

A(:,j)+h : matrix A with h added to the entries in its jth column.
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Definition 4. Given a matrix M of dimension a × b and integers r, s such
that a + r − 1 ≤ m(n + 1) and b + s − 1 ≤ n(m + 1), define [M ]r,s to be an
m(n+ 1)× n(m+ 1)-dimensional matrix where M is copied starting at position
(r, s), and all other coordinates are set to zero.

Using the above notations we construct matrices C,D as follows, where h > 0
(see Figure 1 in Appendix B):

C = [A+ h]1,1 + [(−1)m×mn]1,n+1 +
∑
j∈[n][A(:,j)+2h]jm+1,1

D = [B + h]1,1 + [(−1)mn×n]m+1,1 +
∑
i∈[m][B(i,:)+2h]1,in+1

The next lemma follows from the construction of C,D. Recall σ(x) =
∑
i xi.

Lemma 5. Given a strategy (x′,y′) of game (C,D), let x = x′(1 : m), y =
y′(1 : n), α = h∗σ(y)−σ(y′(n+1 : (m+1)n)), and β = h∗σ(x)−σ(x′(m+1 :
(n+ 1)m)). Then,

(Cy′)i =

{
α+ (Ay)i if i ∈ [m]

2hyb(i−1)/mc + (Ay)r if i ∈ [m+ 1,m(n+ 1)], r = ((i− 1) mod m) + 1.

(x′TD)j =

{
β + (xTB)j if j ∈ [n]

2hxb(j−1)/nc + (xTB)r if j ∈ [n+ 1, n(m+ 1)], r = ((j − 1) mod n) + 1.

Before the formal reduction, here is a brief intuition. Note that in (C,D) we
have copied (A+ h,B + h) in the top-left m× n block, we call it first block now
on. Since adding a constant does not change NE of a game, if strategies from the
first block are played with non-zero probability at a NE of (C,D), then it may
give a NE of (A,B). This is ensured if payoffs achieved at the NE are positive
(or at least h > 0; a solution of MaxPayoff), using Lemma 5.

To guarantee a in B0.5 for game (A,B) (solution of InBox), we make use
of the blocks added after the first block in both the directions. In particular,
in Lemma 5, if ∃j ∈ [n], yj > 0.5 ∗ σ(y), then for the first player her first m
strategies are worse than those from block [mj+ 1 : mj+m], forcing her to play
only from her last mn strategies. This will force the second player to move away
from the first block too (or else he gets −ve payoff), and thereby leading to a NE
where both play from last mn strategies and both get zero payoff (not a solution
of MaxPayoff). We will use these observations crucially in the reduction.

For game (A,B) only those NE (x,y) are interesting which satisfy x,y ≤ 0.5
(solutions of InBox). We show that such NE are retained as NE of (C,D). The
proof uses the fact that in C and D, top-left block encodes A and B respectively.

Lemma 6. (A,B) has a NE (x,y) ∈ B0.5 iff ((x, 0mn), (y, 0mn)) is a NE of (C,D).

Lemma 6 maps a solution of InBox in game (A,B) to a NE of (C,D) where
players play only among their first m,n strategies respectively. Next we show
a reverse mapping: a NE of (C,D) where both players play some of first m,n
strategies, gives a NE of game (A,B). Recall that for vector x, η(x) = x/σ(x).
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Lemma 7. If (x′,y′) is a NE of game (C,D) s.t. x = x′[1 : m] and y = y′[1 : n]
are non zero, then (η(x), η(y)) is a NE for game (A,B), and (η(x), η(y)) ∈ B0.5.

Lemmas 6 and 7 implies that game (A,B) has a NE in B0.5 if and only if
game (C,D) has a NE where both the players play some of first m,n strategies
respectively. If we show that to get payoff of at least h in the latter game, players
have to play some of first m,n strategies, then clearly the reduction will follow.

Lemma 8. Given a strategy profile (x′,y′), if x′TCy′ ≥ h and x′TDy′ ≥ h
then x = x′(1 : m) and y = y′(1 : n) are non-zero.

The next theorem follows using Lemmas 6, 7, and 8.

Theorem 9. Game (A,B) has a NE in ball B0.5 if and only if game (C,D) has
a NE where every player gets payoff at least h.

Next theorem shows reduction from InBox to Superset using Lemma 6.

Theorem 10. Game (A,B) has a NE in B0.5 if and only if game (C,D) has a
NE where all the strategies played with non-zero probability by first and second
player are from T1 = [1 : m] and T2 = [1 : n].

Lemmas 6 and 7 imply that, one of first m,n strategies are played with non-
zero probability by respective players in game (C,D) if and only if game (A,B)
has a NE in ball B0.5. Thus next theorem gives a Turing (and not a many-one)
reduction from InBox to Subset.

Theorem 11. Game (A,B) has a NE in ball B0.5 if and only if ∃i ∈ [m],∃j ∈
[n] such that for T1 = {i} and T2 = {j}, game (C,D) has a NE where all
strategies of T1 and T2 are played with non-zero probability.

In Appendix C we extend Theorems 9, 10 and 11 to 3-player games in Theo-
rems 33, 34 and 35 respectively. These together with ETR-hardness of InBox in
3-Nash [22], and Theorem 25 showing containment in ETR gives the next result.

Theorem 12. Problems MaxPayoff, Subset and Superset are ETR-complete
in 3-player games.

A 3-player game can be reduced to a k-player game trivially, without changing
its set of NE, by adding k − 3 dummy players with one strategy each (and
payoff tensor Ai = [h] to get reduction for MaxPayoff). And therefore, the
next theorem follows from Theorems 12 and 25.

Theorem 13. Given a k-player game (A1, . . . , Ak), for a constant k ≥ 3, prob-
lems of NonUnique, MaxPayoff, Subset and Superset are ETR-complete.

Finally, to show ETR-completeness for NonUnique, in Appendix C.1 we re-
duce MaxPayoff to NonUnique in 3-player games (Theorem 42), and thereby
obtain (using Theorem 25),

Theorem 14. Given a k-player game (A1, . . . , Ak), for a constant k ≥ 3, prob-
lem of NonUnique is ETR-complete.

9



4 Symmetric 3-Nash: ETR and FIXPa Completeness

In this section, we give a reduction from 3-Nash to symmetric 3-Nash, and
thereby obtain ETR-hardness for Subset and Superset, and FIXPa-hardness;
for containment in ETR and FIXPa see Appendices A and D respectively.

Let the given game be (A,B,C), where each tensor is m × n × p. Let D
denote the reduced symmetric game, which will be of dimension l× l× l, where
l = m + n + p. Let (x,y, z) be a NE of (A,B,C). We will show that there are
positive numbers α, β, γ such that (d,d,d) is a NE of the reduced game, where
d is a l-dimensional vector (αx|βy|γz). Furthermore, let (d,d,d) be a NE of the
reduced game, where d decomposes into vectors x′,y′, z′ of dimension m,n, p
respectively. Scaling these vectors gives a NE (x,y, z) of game (A,B,C). This
will yield mapping in both directions.

Essential to this reduction is the 3 × 3 × 3 symmetric game G given below.
We represent the payoff tensor of the first player by three 3 × 3 matrices, one
for each of her pure strategy. Here a, b, c are any non-negative reals.0 0 0

0 1 a
0 a 0

 ,
0 0 b

0 0 0
b 0 1

 ,
1 c 0
c 0 0
0 0 0

 (4)

Lemma 15. If (α, β, γ) is a symmetric NE of game G, then α, β, γ > 0.

From G, we derive symmetric game D, which is l× l× l, by blowing up each
of the three strategies of G to m,n, p number of strategies respectively. Copy 0s
and 1s to their respective blocks, and replace blocks corresponding to a, b, c by
A,B,C respectively. For a formal description of D see (8) in Appendix E.

In the above game, suppose two players are playing mixed-strategy d =
(x|y|z), where x,y, z are of dimensions m,n, p respectively. Then from strategy
s the third player receives payoff:

πD(s,d) =


(σ(y))2 + 2

∑
j∈[n],k∈[p]Asjkyjzk, if s ≤ m,

(σ(z))2 + 2
∑

i∈[m],k∈[p]Biskxizk if m < s ≤ m+ n

(σ(x))2 + 2
∑

i∈[m],j∈[n] Cijsxiyj if m+ n < s ≤ l
(5)

Wlog we assume that A,B,C ≥ 0 and hence D ≥ 0. We consider 0
0 as 0.

Lemma 16. If d = (x|y|z) is a SNE of game D then (σ(x), σ(y), σ(z)) is a NE

of G where a =
maxs≤m

∑
jk Asjkyjzk

σ(y)σ(z) , b =
maxs≤n

∑
i,k Biskxizk

σ(x)σ(z) , c =
maxs≤p

∑
i,j Cijsxiyj

σ(x)σ(y) .

Lemmas 15 and 16 imply that at any SNE d = (x|y|z), all three components
x,y, z of the strategy profile are non-zero. Next we show that normalizing each
gives a NE of the original game (A,B,C).

Lemma 17. If d = (x|y|z) is a SNE of game D, then (η(x), η(y), η(z)) is a
NE of game (A,B,C).
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The mapping from SNE of game D to NE of game (A,B,C) established
in Lemma 17 implies that computing SNE in symmetric games is no easier
than computing a NE in normal games. We extend this reduction to k-Nash
in Appendix G. Next, we show a mapping in reverse direction, i.e., from NE
of (A,B,C) to a SNE of D, to obtain ETR-hardness results for a number of
decision problems in symmetric 3-Nash.

Lemma 18. Let (x,y, z) be a NE of (A,B,C), and let (α, β, γ) be a NE of game
G where a, b, c are set to payoffs of the first, second and third players respectively
at the NE of game (A,B,C). Then d = (αx|βy|γz) is a SNE of game D.

The next theorem summaries the relation between NE of game (A,B,C) and
SNE of game D, and follows using Lemmas 17 and 18.

Theorem 19. Profile d = (x|y|z) is a SNE of game D iff (η(x), η(y), η(z)) is
a NE of game (A,B,C).

We showed a number of ETR-completeness results for 3-Nash in Section 3.
Since, support of NE remains intact in the reduction from 3-Nash to symmetric
3-Nash as shown in Theorem 19, next we show ETR-completeness of Subset
and Superset problems for symmetric 3-Nash.

Theorem 20. Given a symmetric game D and a subset T ⊂ S, it is ETR-
complete to check if there exists a SNE x s.t. xs > 0, ∀s ∈ T (Subset).

The next theorem follows similarly using Theorems 12 and 19.

Theorem 21. Given a symmetric game D and a subset T ⊂ S, it is ETR-
complete to check if there exists a SNE x s.t. xs = 0, ∀s ∈ S \ T (Superset).

Even though Theorem 19 reduces 3-Nash, which is known to be FIXP-
complete [7], to symmetric 3-Nash, we do not get FIXP-harness for the latter.
This is because to obtain a solution, say x, of former requires division among
the coordinates of a solution, say d, of latter. While FIXP reduction requires
that every xi is a linear function of some dj , with rational coefficients (because
of irrational solutions). Instead, in Appendix F we show FIXPa-completeness for
symmetric 3-Nash which always has a rational solution, and obtain the following.

Theorem 22. Symmetric 3-Nash is FIXPa-complete.

Since there is no trivial extension of symmetric 3-player game to symmetric
k-player game, in Appendix G we extend Theorems 20, 21 and 22 to symmetric
k-Nash, and show the following.

Theorem 23. For symmetric k-Nash, problems Subset and Superset are ETR-
complete, where k ≥ 3 is a constant.

Theorem 24. For a constant k ≥ 3, symmetric k-Nash is FIXPa-complete.

We refer the reader to Appendix H for a discussion on the significance of our
results and open questions.
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A (Symmetric) k-Nash: Containment in ETR

In this section we show that the first four decision problems described in Section
2.1 are in ETR, for k-Nash as well as symmetric k-Nash. For a k-player game
(A1, . . . , Ak), NE characterization of (1) can be reformulated as a set of poly-
nomial inequalities as follows, where variable xis captures the probability with
which player i plays s ∈ Si, and variable λi captures her best payoff.

∀i ∈ [1 : k], ∀s ∈ Si, xis ≥ 0; πi(s,x
−i) ≤ λi; xis(πi(s,x

−i)− λi) = 0 (6)

It is easy to see that strategy profile x ∈ ∆ satisfies (1) if and only if it
satisfies (6).

Theorem 25. Given a k-player game (A1, . . . , Ak), for a constant k, the prob-
lems of NonUnique, MaxPayoff, Subset and Superset are in ETR.

Proof. To frame NonUnique as an ETR problem, take two copies of (6) each
with different sets of variables, say x and y, and add |x − y|2 > 0 to it. This
system has a feasible solution (x,y) if and only if the game has two NE x 6= y.
Thus, containment of NonUnique in ETR follows.

For MaxPayoff, add ∀i ∈ [1 : k], πi(x) ≥ h to the system (6). It has a
feasible solution x if and only if x is a NE of the game where payoff received by
every player is at least h, implying MaxPayoff is in ETR.

Similarly, to formulate Subset, add ∀i ∈ [1 : k], ∀s ∈ Ti, xis > 0 to (6). And
for Superset, add ∀i ∈ [1 : k], ∀s ∈ Si \ Ti, xis = 0 to (6). ut

Given a symmetric game A, the following system of polynomial inequalities
(similar to (6)) exactly captures its symmetric NE, where variable xs captures
the probability of playing strategy s ∈ S and λ captures the payoff.

∀s ∈ S, xs ≥ 0; π(s,x) ≤ λ; xs(π(s,x)− λ) = 0

The proof for the next theorem follows similar to that of Theorem 25.

Theorem 26. Given a symmetric k-player game A, for a constant k, the prob-
lems of NonUnique, MaxPayoff, Subset and Superset for symmetric NE
are in ETR.

B Missing proofs of section 3

Proof of Lemma 6. To prove forward direction, it suffices to check if (x′,y′)
satisfies (2) for game (C,D). We show the conditions for the first player, namely
involving C, and proof for the second player follows similarly. As last mn strate-
gies in y′ are not played at all, we have α = h

∑
j∈[n] yi −

∑
j∈[n+1,n(m+1)] y

′
j =

h ∗ 1− 0 = h. This together with Lemma 5 gives,

i ∈ [m], (Cy′)i = h+ (Ay)i ⇒ max
i∈[m]

(Cy′)i = h+ max
i∈[m]

(Ay)i

13



A+ h (−1)m×mn

A(:,1)+2h
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mn
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B(1,:)+2h B(m,:)+2h

n mn

m

mn

C : D :

(0)mn×mn

Fig. 1.

For i ∈ [m + 1,m(n + 1)], let r = ((i − 1) mod m) + 1 and k = b(i − 1)/mc.
Then using Lemma 5 and the fact that yk ≤ 0.5, we have

(Cy′)i ≤ 2h(0.5) + (Ay)r = h+ (Ay)r = (Cy′)r

In other words strategies [1 : m] give at least as much payoff as the rest. Since
(x,y) is a NE of game (A,B), if x′i = xi > 0 then (Cy′)i = h + (Ay)i =
h+ maxk∈[m](Ay)k = maxk∈[m(n+1)](Cy

′)k.
For the reverse direction, ∃i ∈ [m]x′i > 0 and hence ∀j ∈ [n], (Cy′)i ≥

(Cy′)mj+i ⇒ 2hyj ≤ h⇒ yj ≤ 0.5. Similarly x ≤ 0.5 follows. ut

Proof of Lemma 7. As σ(x), σ(y) > 0, to show (η(x), η(y) is a NE of (A,B)
it suffices to show the following.

∀i ∈ [m], xi > 0 ⇒ (Ay)i = maxk∈[m](Ay)k
∀j ∈ [n], yj > 0 ⇒ (xTB)j = maxk∈[n](xTB)k

We show that the first one holds, and the proof for the second follows similarly.
Let λ = maxk∈[m(n+1)](Cy

′)k and λ′ = maxk∈[m](Cy
′)k = α + maxk∈[m](Ay)k

(Using Lemma 5). As ∃i ∈ [m], x′i > 0 we have λ′ = λ. Thus we get,

∀i ∈ [m], xi > 0⇒ (Cy′)i = λ⇒ α+(Ay)i = α+ max
k∈[m]

(Ay)k ⇒ (Ay)i = max
k∈[m]

(Ay)k

For the second part, to the contrary suppose ∃j ∈ [n], (η(y))j =
yj
σ(y) >

0.5 ⇒ 2yj > σ(y). Then for some i ∈ [m] we have x′i > 0 and (Cy′)i ≤
hσ(y) + (Ay)i < 2hyj + (Ay)i = (Cy′)jm+i ≤ λ, a contradiction to (x′,y′)
being a NE of game (C,D). ut

Proof of Lemma 8. If y = 0, then ∀i ∈ [m(n + 1)] we have (Cy′)i ≤ 0 using
Lemma 5, and in turn x′TCy′ ≤ 0. Similarly, if x = 0, then ∀j ∈ [n(m + 1)
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we have (x′TD)j ≤ 0, and then x′TDy′ ≤ 0. Lemma follows using the fact that
h > 0. ut

C 3-Nash: InBox to MaxPayoff, Subset and Superset

Like in the two player case, given a 3-player game with m × n × p-dimensional
payoff tensors (A,B,C), we will create a game (D,E, F ) of dimension m(n +
1) × n(p + 1) × p(m + 1) and insert the original game in the first block with h
added. We start with the definitions, analogous to those in Section 3.1.

Definition 27. For i ∈ [m], j ∈ [n], k ∈ [p], and a real number h, define
A(i,:,:)+h : Tensor A with h added to the entries aij′k′ ∀j′ ∈ [n],∀k′ ∈ [p].
A(:,j,:)+h : Tensor A with h added to the entries ai′jk′ ∀i′ ∈ [m],∀k′ ∈ [p].
A(:,:,k)+h : Tensor A with h added to the entries ai′j′k ∀i′ ∈ [m],∀j′ ∈ [n].

Definition 28. Given a tensor T of dimension a× b× c and integers r, s, t s.t.
a+ r−1 ≤ m(n+ 1), b+ s−1 ≤ n(p+ 1) and c+ t−1 ≤ p(m+ 1), define [T ]r,s,t
to be an m(n + 1) × n(p + 1) × p(m + 1) dimensional tensor where T is copied
starting at position (r, s, t), and all other coordinates are set to zero.

Construct game (D,E, F ) as follows.

D = [A+ h]1,1,1 + [(−1)m,n(p+1),mp]1,1,p+1 +
∑
j∈[n]

[A(:,j,:)+2h]jm+1,1,1

E = [B + h]1,1,1 + [(−1)mn,n,(m+1)p]m+1,1,1 +
∑
k∈[p]

[B(:,:,k)+2h]1,kp+1,1

F = [C + h]1,1,1 + [(−1)m(n+1),np,p]1,n+1,1 +
∑
i∈[m]

[C(i,:,:)+2h]1,1,in+1

Recall that πi(x), for x ∈ ∆ represents the payoff of player i what played
profile is x. Since we will be dealing with two games in this section, in order to
resolve ambiguity we super-script it with the payoff tensor under consideration,
i.e., πA1 (d). To denote payoff from a pure-strategy i, when other two are playing
y, z we use πA1 (i,y, z), even if y, z are not probability distributions.

Lemma 29. Let y′ and z′ be vectors of sizes n(p + 1) and p(m + 1). Let y =
y′[1 : n], z = z′[1 : p] and α = h ∗ σ(y)σ(z)−∑j∈[p+1,p(m+1)] z

′
j. We have

πD
1 (i,y′,z′) =


α+ πA

1 (i,y,z) if i ∈ [m]

2hyb(i−1)/mc + πA
1 (i,y,z) if i ∈ [m+ 1,m(n+ 1)],

where r = ((i− 1) mod m) + 1

Let B0.5 = [0, 0.5]m+n+p. Using the payoff structure in game (D,E, F ) we
show the next lemma.
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Lemma 30. Game (A,B,C) has a NE (x,y, z) ∈ B0.5 iff

(x′,y′, z′) = ((x, 0mn), (y, 0np), (z, 0mp))

is a NE of the game (D,E, F ).

Proof. The proof is similar to that of Lemma 6, For the forward direction, we
show the first condition of (3) characterizing 3-Nash, and other two follow simi-
larly. Again α = h, and hence max i ∈ [m]πD1 (i,y′, z′) = h+maxi∈[m] π

A
1 (i,y, z)

(Using Lemma 29). Further, ∀j ∈ [n] and ∀i ∈ [m], we have πD1 (jm+ i,y′, z′) =
2hyj+π

A
1 (i,y, z) ≤ h+πA1 (i,y, z) = πDi (i,y′, z′). Thus, firstm strategies at least

as good as last [m+ 1,m(n+ 1)]. We get ∀i ∈ [m(n+ 1)]x′i > 0⇒ πD1 (i,y′, z′) =
maxs∈[m(n+1)] π

D
1 (s,y′, z′).

For the reverse direction, ∃i ∈ [m]x′i > 0 and hence ∀j ∈ [n], πD1 (i,y′, z′) ≥
πD1 (mj + i,y′, z′) ⇒ 2hyj ≤ h ⇒ yj ≤ 0.5. Similarly x ≤ 0.5 and z ≤ 0.5
follows. ut

Next we obtain a solution of InBox for game (A,B,C) from a NE of (D,E, F )
with some special property.

Lemma 31. If (x′,y′, z′) is a NE of game (D,E, F ) such that the vectors x =
x′[1 : m], y = y′[1 : n], and z = z′[1 : p] are non-zero, then (η(x), η(y), η(z)) is
a NE for the game (A,B), and (η(x), η(y), η(z)) ∈ B0.5.

Proof. As σ(x), σ(y), σ(z) > 0, profile (η(x), η(y), η(z) is well-defined. To show
that it is NE of game (A,B,C) it suffices to show the following for the first
player, and similar argument follows for the other two players.

∀i ∈ [m], xi > 0 ⇒ πA1 (i,y, z) = max
l∈[m]

πA1 (l,y, z)

Let λ = maxk∈[m(n+1)] π
D
1 (i,y′, z′), and λ′ = maxk∈[m] π

D
1 (k,y′, z′) = α +

maxk∈[m] π
A
1 (k,y, z) (Using Lemma 29). As ∃i ∈ [m], x′i > 0 we have λ′ = λ.

Thus we get,

∀i ∈ [m], xi > 0⇒ x′i > 0
⇒ πD1 (i,y′, z′) = λ
⇒ α+ πA1 (i,y, z) = α+ maxk∈[m] π

A
1 (k,y′, z′)

⇒ πA1 (i,y′, z′) = maxk∈[m] π
A
1 (k,y′, z′)

For the second part, to the contrary suppose ∃j ∈ [n], (η(y))j =
yj
σ(y) >

0.5 ⇒ 2yj > σ(y). Then for some i ∈ [m] we have x′i > 0 and πD1 (i,y′, z′) ≤
hσ(y) + πA1 (i,y′, z′) < 2hyj + πA1 (i,y′, z′) = πD1 (jm + i,y′, z′) ≤ λ, a contra-
diction to (x′,y′, z′) being a NE of game (D,E, F ). ut

Now if we can relate the NE of (D,E, F ) where at least one of first m,n, p
strategies are played by the respective players, and the payoff received at the
NE by all the players, then InBox to MaxPayoff reduction will follow.
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Lemma 32. Given a strategy profile d = (x′,y′, z′) of game (D,E, F ), if πi(d) ≥
h, i = 1, 2, 3, then x = x′(1 : m), y = y′(1 : n) and z = z′(1 : p) are non-zero.

Proof. If y = 0, then ∀i ∈ [m(n+ 1)] we have πD1 (i,y′, z′) ≤ 0 using Lemma 29,
and in turn π1(d) ≤ 0. Similarly, if z = 0 then we get π2(d) ≤ 0, and if x = 0
then π3(d) ≤ 0. Lemma follows using the fact that h > 0. ut

The next theorem, for InBox to MaxPayoff reduction, follows using Lem-
mas 30, 31, and 32.

Theorem 33. Game (A,B,C) has a NE in ball B0.5 if and only if game (D,E, F )
has a NE where every player gets payoff at least h.

The next theorem showing reduction from InBox to Superset follows using
Lemma 30.

Theorem 34. Game (A,B,C) has a NE in B0.5 if and only if game (D,E, F )
has a NE where all the strategies played with non-zero probability by players are
from T1 = [1 : m], T2 = [1 : n] and T3 = [1 : p] respectively.

Next theorem follows using Lemmas 30 and 31, and gives a Turing machine
reduction from InBox to Subset.

Theorem 35. Game (A,B,C) has a NE in ball B0.5 if and only if ∃i ∈ [m],∃j ∈
[n], k ∈ [p] such that for T1 = {i}, T2 = {j} and T3 = {k}, game (D,E, F ) has
a NE where all strategies of T1, T2, T3 are played with non-zero probability.

Theorems 33, 34 and 35 together with ETR-hardness of InBox in 3-Nash,
and Theorem 25 gives the next result.

Theorem 36. The problems of MaxPayoff, Subset and Superset are ETR-
complete in 3-player games.

A 3-player game can be reduced to a k-player game trivially, without changing
its set of NE, by adding k − 3 dummy players with one strategy each (and
payoff tensor Ai = [h] to get reduction for MaxPayoff). And therefore, the
next theorem follows from Theorem 37.

Theorem 37. Given a k-player game (A1, . . . , Ak), for a constant k ≥ 3, the
problems of MaxPayoff, Subset and Superset are ETR-complete.

C.1 MaxPayoff to NonUnique

In this section we reduce MaxPayoff to NonUnique in a 3-player game. Let
(A,B,C) be a given game, and for a given rational number h > 0, we are asked
to check if it has a NE where all three players get payoff at least h. We will
reduce this problem to checking if game (D,E, F ) has more than one equilibrium.
Tensors A,B,C are of m × n × p-dimensional, where m,n, p are number of
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strategies of player 1, 2, 3 respectively. Let m′ = m + 1, n′ = n + 1, p′ = p + 1,
then D,E, F are of dimension m′ × n′ × p′, where

∀i ∈ [m], j ∈ [n], k ∈ [p], Dijk = Aijk, Eijk = Bijk, Fijk = Cijk
∀j ∈ [n′], k ∈ [p′], Dm′jk = h; ∀i ∈ [m′], k ∈ [p′], Ein′k = h

∀i ∈ [m′], j ∈ [n′], Fijp′ = h

Rest of the entries in D,E, F are set to zero. Basically, we added one extra
strategy for each player and made sure that the player gets payoff h when she
plays this extra strategy regardless of what others play. Thus, the next lemma
follows by construction.

Lemma 38. Let (x′,y′, z′) be a strategy profile for game (D,E, F ), and x =
x′(1 : m),y = y′(1 : n) and z = z′(1 : p). Then,

– πD1 (m′,y′, z′) = h, πE2 (x′, n′, z′) = h, and πF3 (x′,y′, p′) = h.
– ∀i ∈ [m], πD1 (i,y′, z′) = πA1 (i,y, z). ∀j ∈ [n], πE2 (x′, j, z′) = πB2 (x, j, z).
∀k ∈ [p], πF3 (x′,y′, k) = πC3 (x,y, k).

Next we show that game (D,E, F ) has a trivial pure NE where all player
plays their extra strategy.

Lemma 39. Pure-strategy profile (m′, n′, p′) is a NE of game (D,E, F )

Proof. When players two and three are playing strategy n′ and p′ respectively,
then ∀i ∈ [m] payoff Din′p′ of the first player is zero, while Dm′n′p′ = h > 0.
Therefore playing m′ is the best response for her. Similarly, we can argue for
players two and three. ut

Except for the trivial NE established in Lemma 39 if game (D,E, F ) an-
other equilibrium, then we need to construct a solution of MaxPayoff in game
(A,B,C).

Lemma 40. If (x′,y′, z′) 6= (m′, n′, p′) is a Nash equilibrium of game (D,E, F ),
then (η(x), η(y), η(z)) is a NE of game (A,B,C) with payoff at least h to each
player, where x = x′(1 : m),y = y′(1 : n) and z = z′(1 : p).

Proof. First we show that σ(x), σ(y), σ(z) > 0. To the contrary suppose z = 0
and wlog x 6= 0. Then, z′p′ = 1, and ∃i ∈ [m], x′i > 0 with payoff πD1 (i,y′, z′) =

πA1 (i,y, z) = 0 (Lemma 38), a contradiction because player one will deviate to
m′ which always fetches payoff h > 0. Similar contradiction can be derived if
σ(y) = 0 or σ(x) = 0.

We will show that η(x) is a best response of the first player when other two are
playing η(y) and η(z) respectively in (A,B,C), and that her payoff is at least h.
Argument for other players follow similarly. Let λ = maxs∈[m]

∑
j∈[n],k∈[p]Asjkyjzk.

It suffices to show that ∀i ∈ [m], xi > 0⇒∑
j∈[n],k∈[p]Aijkyjzk = λ and λ ≥ h,

because normalization will increase the payoff of all the pure-strategies, and that
too by the same factor.
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Let λ′ = maxi∈[m′] πD1 (i,y′, z′), then λ = λ′ because ∃i ∈ [m], xi > 0 and
payoff at i is λ.

xi > 0⇒ x′i > 0⇒ πD1 (i,y′, z′) = λ′ ⇒
∑

j∈[n],k∈[p]
Asjkyjzk = λ

Now since each player gets payoff h from their last strategy in game (D,E, F )
(Lemma 38), other strategies played with non-zero probabilities have to fetch
payoff at least h and hence λ = λ′ ≥ h follows. ut

We also need to establish that if game (A,B,C) has a feasible solution for
MaxPayoff then game (D,E, F ) has more than one equilibrium.

Lemma 41. If (x,y, z) is a NE of (A,B,C) where every player gets payoff at
least h, then ((x|0), (y|0), (z|0)) is a NE of game (D,E, F ).

Proof. Let x′ = (x|0),y′ = (y|0) and z′ = (z|0). We will show that x′ is a best
response for player one against y′, z′ in (D,E, F ), and cases for other two players
follow similarly. Let λ = maxi∈[m] π

A
1 (i,y, z) and λ′ = maxi∈[m′] πD1 (i,y′, z′).

Since λ ≥ h and πD1 (m′,y′, z′) = h (Lemma 38) we get λ = λ′, and the lemma
follows. ut

Using Lemmas 39, 40 and 41, we get the next theorem.

Theorem 42. Game (A,B,C) has a NE where every player gets payoff h iff
game (D,E, F ) has more than one equilibrium.

As argued in Section 3.1 a 3-player game can be trivially reduced to a k-
player game by adding k − 3 dummy agents. Therefore, next theorem follows
using Theorems 25, 36 and 42.

Theorem 43. Given a k-player game (A1, . . . , Ak), for a constant k ≥ 3, the
problems of NonUnique is ETR-complete.

D Symmetric k-Nash: Containment in FIXPa

Next we show that symmetric k-Nash, for a constant k, is in FIXP, and conse-
quently strong approximation is in FIXPa. Let the given game be represented
by tensor A and let the set of pure strategies of players be S. At a symmetric
NE all players play the same mixed-strategy. Consider a function F : ∆→ ∆ as
follows, where x′ = F (x) for an x ∈ ∆:

∀s ∈ S, x′s =
xs + max{πA(s,x)− πA(x), 0}

1 +
∑
s max{πA(s,x)− πA(x), 0} (7)

Nash [15] proved that fixed-points of F are exactly the symmetric NE of
game A.
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Theorem 44. The problem of computing symmetric NE in a symmetric k-
player game is in FIXP for a constant k is in FIXP, and corresponding strong
approximation is in FIXPa.

Proof. The operations used in defining F are +,−, ∗, / and max. Further, domain
of F is convex and compact, and function is well-defined over the domain. Thus,
finding fixed-points of F is in FIXP by definition. Since, description of F is
O(size(A)) it together with Nash’s result [15] imply that finding symmetric NE
of A is also in FIXP. Further, for a given ε > 0 if x is ε-near to an actual fixed-
point x∗, i.e., |x−x∗|∞ < ε, then x is also a strong approximate symmetric NE
of game A. Containment in FIXPa follows. ut

E Missing proofs of section 4

Proof of Lemma 15. We will first show that G has no symmetric NE of support
one or two. This involves a case analysis of which we present one representative
case each. First observe that (α, β, γ) = (1, 0, 0) cannot be a symmetric NE, since
player 1 should play (0, 0, 1) if the other two players play the given strategy. Next
consider the strategy (α, β, 0) with the first two components non-zero. Because
of the four zeros in the upper left corner of the second matrix, player 1 will be
better off playing the third strategy instead of the second strategy. Hence any
symmetric NE of G must be of full support, proving the first claim.

Since the payoffs from three strategies of G are respectively β2 + 2aβγ, γ2 +
2bαγ, and α2+2cαβ, and all three strategies are played, the second claim follows.

ut

Proof of Lemma 16. Let α = σ(x), β = σ(y) and γ = σ(z). Clearly, the payoffs
from three strategies of G are respectively β2 + 2aβγ = β2 + 2a′, γ2 + 2bαγ =
γ2 + 2b′, and α2 + 2cαβ = α2 + 2c′. Observe that these are also the best payoffs
among strategies [1 : m], [m+ 1 : m+n] and [m+n+ 1 : l] respectively in game
D. Let the maximum among these three be λ. Then, we have

α = σ(x) > 0⇒ ∃i ≤ m, xi > 0⇒ πD(i,d) = β2 + 2a′ = β2 + 2aβγ = λ

Similarly, we can show that if β > 0 then payoff at second strategy is λ, and
if γ > 0 then third gives λ. Hence (α, β, γ) is a symmetric NE of game G. ut

Proof of Lemma 17. Let x′ = η(x),y′ = η(y) and z′ = η(z). These are
well-defined because lemmas 15 and 16 imply the following claim.

Claim. In any symmetric NE d = (x|y|z) of game D, all three components
x,y, z of the strategy profile are non-zero.

We will show that (x′,y′, z′) satisfies conditions (3) characterizing NE of game
(A,B,C). We do this for the first condition, the rest two follow similarly. Let λ
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denote the maximum payoff of an agent in the symmetric game D when others
are playing d. For strategy s ∈ S1 of the first player, we have,

x′s > 0⇒ xs > 0
⇒ πD(s,d) = λ (Using (5) and (3))
⇒ πD(s,d) ≥ πD(s′,d), ∀s′ ≤ m
⇒∑

j∈[n],k∈[p]Asjky
′
jz
′
k ≥

∑
j∈[n],k∈[p]As′jky

′
jz
′
k,∀s′ ≤ m

ut

Proof of Lemma 18. Clearly, a = maxi∈S1

∑
j,k Aijkyjzk, b = maxj∈S2

∑
i,k Bijkxizk

and c = maxi,j Cijkxiyj . Let x′ = αx, y′ = βy and z′ = γz. Since, α, β, γ >
0 (Lemma 15), we have x′,y′, z′ 6= 0. In the symmetric game D, let a′ =
maxs≤m πD(s,d) = β2 + 2aβγ, b′ = maxm<s≤m+n π

D(s,d) = γ2 + 2bαγ, and
c′ = maxm+n<s≤l πD(s,d) = α2 + 2cαβ. Note that a′, b′, c′ are payoffs from the
three strategies at (α, β, γ) in game G. Since (α, β, γ) is a NE of G, we have
a′ = b′ = c′ (using Lemma 15).

As (x,y, z) is a NE of game (A,B,C), we get

∀i ∈ [m], x′i > 0⇒ xi > 0⇒
∑
j,k

Aijkyjzk = a⇒ πD(i,d) = a′

Similarly we get, ∀j ∈ [n], y′j > 0 ⇒ πD(m + j,d) = b′, and ∀k ∈ [p], z′k >
0⇒ πD(m+ n+ k,d) = c′. Lemma follows using the fact that a′ = b′ = c′. ut

Proof of Lemma 20 Theorem 12 establishes that checking if game (A,B,C)
has a NE where strategies in Ti ⊂ Si, i = 1, 2, 3 are played with non-zero
probability is ETR-complete. Let l = m + n + p. Construct a symmetric game
D of dimension l× l× l from G of (4) by blowing it up and replacing a, b and c
with A, B, and C respectively. Formally construct D is as follows:

Dstu =

1 ≤ s, t, u ≤ l



As(t−m)(u−m−n) if s ≤ m & m < t ≤ m+ n & m+ n < u ≤ l
As(u−m)(t−m−n) if s ≤ m & m < u ≤ m+ n & m+ n < t ≤ l
Bt(s−m)(u−m−n) if t ≤ m & m < s ≤ m+ n & m+ n < u ≤ l
Bu(s−m)(t−m−n) if u ≤ m & m < s ≤ m+ n & m+ n < t ≤ l
Ct(u−m)(s−m−n) if t ≤ m & m < u ≤ m+ n & m+ n < s ≤ l
Cu(t−m)(s−m−n) if u ≤ m & m < t ≤ m+ n & m+ n < s ≤ l
1 if s ≤ m & m < t = u ≤ m+ n,

1 if m < s ≤ m+ n & m+ n < t = u ≤ l
1 if m+ n < s ≤ l & t = u ≤ m
0 Otherwise.

(8)

Let T = T1 ∪ {j + m | j ∈ T2} ∪ {k + m + n | k ∈ T3}. Using Theorem 19
it follows that game (A,B,C) has a NE where strategies of Ti are played with
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positive probability if and only if game D has a symmetric NE where strategies
of T are played with positive probability. Since size of D is O(size(A,B,C)),
ETR-hardness follows.

Let l = |S|, then the problem reduces to checking if there exists a vector d
that satisfies the following:

∀t ∈ T, dt > 0 ∀s ∈ S \ T, ds ≥ 0,
∀s ∈ S,∑j∈[l],k∈[l]Dijkdjdk ≤ π, ds(

∑
j∈[l],k∈[l]Dijkdjdk − π) = 0

The last condition ensures that (d,d,d) satisfies (3), and constitutes a symmetric
NE of game D. Thus containment in ETR follows. ut

F FIXPa-completeness for symmetric 3-Nash

Using the reduction from 3-Nash to symmetric 3-Nash established by Theorem
19, together with FIXPa-completeness for 3-Nash [7], in this section we show
that symmetric 3-Nash is also FIXPa-complete. For this we need to compute a
strategy profile (x′,y′, z′) that is ε-near to an actual equilibrium of (A,B,C),
given a symmetric profile d ε′-near to a symmetric NE d∗ of D, where distances
are measured in l∞ norm.

In reduction of Theorem 19, obtaining solution of (A,B,C) involves e.g.,
dividing x by σ(x). If the latter is very small, this may give us a vector that is
very far from a solution of (A,B,C), even when d may be close to d∗. To get
around this next we make sure that σ(x) is big enough.

Wlog, we assume that all entries of A,B,C ∈ [0, 0.1], as adding constants to
A,B,C or scaling them by positive constants does not change its set of NE. In
that case, payoffs of a player at its NE is in [0, 0.1]. The a, b, c of Lemma 16 are
also in [0, 0.1]. Thus, if we can lower bound the NE strategy (α, β, γ) of game G
with such a, b, c then we get a lower bound on σ(x), σ(y) and σ(z) as desired.

Lemma 45. If (α, β, γ) is a NE of game G, where a, b, c ∈ [0, 0.1], then 1
4 ≤

α, β, γ ≤ 1
2 .

Proof. NE (α, β, γ) of G is fully-mixed, and therefore each of the three strategies
fetch the same payoff, i.e., β2 + 2aβγ = γ2 + 2bαγ = α2 + 2cαβ. We show that
none of α, β, γ < 1/4, and the upper bound follows. There are two cases for each,
and we show them for α. For β and γ they follow similarly.

Case I: α < 1/4, and β, γ ≥ 1/4.
As β + γ ≥ 3/4, wlog let β ≥ 3/8. Then, we have β2 + aβα ≥ 9/64 + 3a/16, and
α2 + 2cαβ ≤ 1/16+ c/2. The above equality gives 9/64+ 3a/16 ≤ 1/16+ c/2⇒ 5/64 ≤
c/2− 3a/16⇒ c ≥ 10/64 ≥ 0.1, a contradiction.

Case II: α, γ < 1/4, and β > 1/2.
β2 + aβγ ≥ 1/4 and γ2 + cαγ ≤ 1+2c/16. Thus, we have 4 ≤ 1 + 2c ⇒ c ≥ 3/2, a
contradiction. ut
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Next we show that strong approximate solution of D maps to a strong ap-
proximate solution of (A,B,C), under the mapping of Theorem 19.

Lemma 46. Let d∗ = (x∗|y∗|z∗) be a symmetric Nash equilibrium of game D,

and d = (x|y|z) be such that |d − d∗|∞ ≤ ε. Then,
∣∣∣ xi

σ(x) −
x∗i

σ(x∗)

∣∣∣ ≤ ε′, ∀i;∣∣∣ yj
σ(y) −

y∗i
σ(y∗)

∣∣∣ ≤ ε′, ∀j; and
∣∣∣ zk
σ(z) −

z∗k
σ(z∗)

∣∣∣ ≤ ε′, ∀k, where ε = ε′

20l2 .

Proof. Lemmas 16 and 45 give us 1
4 ≤ σ(x∗) ≤ 1

2 . Using this we obtain bounds
on σ(x).

∀i ≤ m, |xi−x∗i | ≤ ε⇒ |σ(x)−σ(x∗)| ≤ mε⇒ σ(x∗)−mε ≤ σ(x) ≤ σ(x∗)+mε

Assuming ε < 1
20m , we get that 1

5 ≤ σ(x) ≤ 2
3 . Next consider the quantity

we wish to bound.∣∣∣ xi

σ(x) −
x∗i

σ(x∗)

∣∣∣ ≤ 9
2 |xi

∑
k 6=i x

∗
k − x∗i

∑
k 6=i xk|

≤ 9
2 |xi

∑
k 6=i(xk +mε)− (xi −mε)

∑
k 6=i xk|

≤ 9
2mε((m− 1)xi +

∑
k 6=i xk)

≤ 9
2m

2ε ≤ ε′

Similar argument suffices to show ∀j,
∣∣∣ yj
σ(y) −

y∗j
σ(y∗)

∣∣∣ ≤ ε′, and ∀k,
∣∣∣ zk
σ(z) -

z∗k
σ(z∗)

∣∣∣ ≤ ε′. ut

From Theorem 19 we know that a symmetric NE d∗ = (x∗|y∗|z∗) maps to
a NE (x′∗,y′∗, z′∗) = (η(x∗), η(y∗), η(z∗))of game (A,B,C). Lemma 46 implies
that finding a profile (x′,y′, z′) that is ε′ near to (x′∗,y′∗, z′∗), for any ε′ < 1
reduces to finding a symmetric profile d that is ε

20l2 near to d∗. Clearly, there is
such a d with size poly{size(A,B,C), log( 1

ε′ )}, and therefore it can be mapped
to a solution of (A,B,C) in polynomial time. Since, such an approximation in
3-Nash is FIXPa-hard [7], and symmetric 3-Nash is in FIXP (Theorem 44), the
next theorem follows.

Theorem 47. Symmetric 3-Nash is FIXPa-complete.

G Symmetric k-Nash: ETR and FIXPa Completeness

Building on the construction of Section E, in this section we reduce k-Nash to
symmetric k-Nash. Given a k-player game A = (A1, . . . , Ak) we construct a
symmetric game D where the set of strategies of each player is S = ∪iSi, such
that NE of game A maps to symmetric NE of game D, and vice-versa. Note that
D will be a k-dimensional tensor with l =

∑
imi coordinates in each dimension.

First we construct the symmetric game G (Similar to that of (4)), which has now
k-players each with k strategies. As players are identical in symmetric games,
the payoff of a player from her pure-strategy depends on which strategies are
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played by how many players; it doesn’t matter who played what. Therefore,
the non-zero entries of G may be represented as follows, where a1, . . . , ak are
non-negative numbers.

G(i, i+ 1, . . . , i+ 1) = 1, ∀i < k; G(k, 1, . . . , 1) = 1

G(i, {1, . . . , i− 1, i+ 1, . . . , k}) = ai,∀i ≤ k
Similar to Lemma 15, it follows that all symmetric NE ofG are of full support.

Next, we can blow up G to construct D, where (i1, . . . , ik)th entry is blown up
to mi1 ×· · ·×mik -dimensional tensor with that entry copied every where except
for those corresponding to ais. In place of ai we replace Ai after appropriate
rotation.

Like Lemma 16 we can show that if d = (x1| . . . |xk) is a symmetric NE of
game D then (σ(x1), . . . , σ(xk)) is a symmetric NE of game G, thereby showing
that each of these sums are strictly positive. Here ai is set to the best payoff
achieved among the strategies of xi divided by Πj 6=iσ(xj). Further, d being
a NE it ensures that if a coordinate j of xi is non-zero then payoff from jth

strategy, among xi is the best. This sets the stage to obtain NE of game A from
d, namely, (η(x1), . . . , η(xk)) (Similar to Lemma 17).

For the reverse mapping, let x = (x1, . . . ,xk) be a NE of game A, and let
α = (α1, . . . , αk) be a symmetric NE of G where ai is set to the payoff agent
i receives at the given NE of A. Then, it follows that d = (α1x

1| . . . |αkxk) is
a symmetric NE of D. The brief reason is as follows: the best payoff from ith
block of strategies is a′i = αk−1i+1 +(k−1)!aiΠj 6=iαi, and x being a NE A non-zero
strategies of xi fetch best payoff to player i, namely ai. Hence, in d the strategies
played with non-zero probability within block i fetch payoff a′i. Further, a′i is also
the payoff from ith strategy in game G, and α being a NE with full support, it
ensures that all a′is are same. Thus, in d best payoffs are the same, across blocks,
and therefore it is a symmetric NE of game D.

The next theorem follows from the above discussion (of this section).

Theorem 48. Profile d = (x1| . . . |xk) is a symmetric NE of game D if and
only if (η(x1), . . . , η(xk)) is a NE of game (A1, . . . , Ak).

Using Theorem 48 together with Theorems 26 and 36 we get the following
ETR completeness results.

Theorem 49. For symmetric k-Nash, problems Subset and Superset are ETR-
complete, where k ≥ 3 is a constant.

A normal k-player game can be reduced to k + 1-player game trivially by
adding a dummy player with one strategy and any payoff, and therefore FIXPa-
hardness of Theorem 2 extends to k-Nash. However, such a reduction is not
possible in case of symmetric games, because the resulting game has to satisfy the
symmetry conditions (see Section 2.1). Therefore, FIXPa-hardness for symmetric
3-Nash does not extend to symmetric k-Nash. We show this result using the fact
that k-Nash is FIXPa-hard together with Theorem 48.
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As done in Section F, we need to lower bound σ(xi) for a given symmetric
NE d = (x1| . . . |xk). Lower bound of 1

4 follows by assuming A1, . . . , Ak ∈ [0, 0.1k ]
wlog, as established in Lemma 45. Finally, using this lower bound we can show

that if |d−d∗|∞ < ε where d∗ is a symmetric NE, then |xi
s/σ(xi)− x∗

i

s /σ(x∗
i
)| <

ε′, ∀i ∈ [1 : k],∀s ∈ Si. In other words the strategy profile (η(x1), . . . , η(xk))

obtained from d is ε′-near to NE (η(x∗
1

), . . . , η(x∗
k

)) obtained from d∗, where
ε = ε

20(maxi |Si|)2 . Thus, FIXPa-hardness follows for symmetric k-Nash, and we

get the next result using Theorem 44.

Theorem 50. For a constant k ≥ 3, symmetric k-Nash is FIXPa-complete.

H Discussion

There is a reduction from symmetric 2-Nash to 2-Nash using the notion of im-
itation games [13]. Is there an analogous reduction from symmetric k-Nash to
k-Nash, for k ≥ 3? For the case of 2-player games, Papadimitriou [17] asked the
complexity of finding a non-symmetric equilibrium in a symmetric game. This
was recently shown to be NP-complete [14]. What is the complexity of the anal-
ogous question for k-player games, for k ≥ 3? For the case of 2-player games, the
question of counting the number of equilibria, even those satisfying special prop-
erties, is typically #P-complete. What is the complexity of analogous questions
for k-player games, for k ≥ 3? Are they PSPACE-complete? Another question
is whether our reduction from 3-Nash to symmetric 3-Nash creates a one-to-one
correspondence between solutions of the two problems. If so, intractability of
counting 3-Nash solutions will carry over to counting symmetric 3-Nash solu-
tions.

Besides the questions studied in this paper, Gilboa and Zemel [10] and
Conitzer and Sandholm [5] had studied a number of other questions for the
case of 2-player games. These need to be studied for the 3-player case as well.
For k-player games, k ≥ 3, finding an ε-Nash equilibrium was shown to be in the
class PPAD by [19]. Equilibrium questions that are in this class have admitted
complementary pivot algorithms that are practical, e.g., for 2-Nash [12] and for
market equilibrium under separable, piecewise-linear concave utility functions
[8]. Are there practical algorithms for finding an ε-Nash equilibrium in k-player
games, k ≥ 3? Finally, is 3-Nash complete for the class FIXP?
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