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Abstract

In this paper we consider the problem of computing mar-

ket equilibria in the Fisher setting for utility models such as

spending constraint and perfect, price-discrimination which

are inspired from modern e-commerce settings and attempt

to bridge the gap between the computationally hard, but re-

alistic, separable, piecewise-linear and concave utility model

and the tractable, but less relevant, linear utility case. While

there are polynomial time algorithms known for these prob-

lems, the question of whether there exist polynomial time

Simplex-like algorithms has remained elusive, even for lin-

ear markets. Such algorithms are desirable due to their con-

ceptual simplicity, ease of implementation and practicality.

This paper takes a significant step towards this goal by pre-

senting the first Simplex-like algorithms for these markets

assuming a positive resolution of an algebraic problem of

Cucker, Koiran and Smale. Unconditionally, our algorithms

are FPTASs; they compute prices and allocations such that

each buyer derives at least a 1
1+ε

-fraction of the utility at a

true market equilibrium, and their running times are poly-

nomial in the input length and 1/ε.

We start with convex programs which capture market

equilibria in each setting and, in a systematic way, convert

them into linear complementarity problem (LCP) formula-

tions. Then, departing from previous approaches which try

to pivot on a single polyhedron associated to the LCP ob-

tained, we carefully construct a polynomial-length sequence

of polyhedra, one containing the other, such that starting

from an optimal solution to one allows us to obtain an op-

timal solution to the next in the sequence in a polynomial

number of complementary pivot steps. Our framework to

convert a convex program into an LCP and then come up

with a Simplex-like algorithm that moves on a sequence of

connected polyhedra may be of independent interest.

1 Introduction

1.1 Market equilibria in the age of e-commerce
The problem of finding an equilibrium price in a market
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Figure 1: Pictorial description of the algorithm

consisting of buyers and goods has interested economists
for more than a century due to its relevance in mod-
eling real-world situations; mathematical economists
have studied its connection with equilibrium theory and,
more recently, computer scientists have focused on find-
ing efficient algorithms for applications to e-commerce.
The following market model was formulated in the late
1800’s and is referred to as the Fisher model: Consider
a market which comprises of a set G of divisible goods
and a set B of buyers with n def= |G| and m def= |B|. Buyer
i ∈ B has a fixed amount of money, say Mi, which it can
spend on buying goods, and its utility from a bundle of
goods is determined by a non-negative, non-decreasing,
concave function Ui : Rn+ → R+. Given the prices of
goods, each buyer acts selfishly and buys a bundle (op-
timal) that maximizes its utility to the extent allowed
by its money. A setting of prices is referred to as market
clearing if, after each buyer is given an optimal bundle,
there is no deficiency or surplus of any good, and the
money of all the buyers is exhausted, i.e., the market
clears. The problem of market equilibria is to find such
prices when they exist. It was only in 1954, that exis-
tence of market clearing prices, or market equilibrium,
was proved by Arrow and Debreu [4], albeit, under mild



conditions on the utilities.1 Unfortunately, their proof
of existence of market equilibrium relied on a fixed point
theorem and did not yield any finite-time algorithm,2 let
alone an efficient one. Subsequent to the work of Arrow
and Debreu, the problem of computing such equilibria
received a great deal of attention from economists and
mathematicians. Notably, Scarf [31] and Smale [33] gave
algorithms for finding fixed points and, as an applica-
tion, obtained algorithms for approximately computing
market equilibria in general settings. Given their gen-
erality, it was not surprising that such algorithms were
very slow and the search for more efficient algorithms
continued. One approach to facilitate the search for effi-
cient algorithms was to make assumptions, and consider
utilities which model reality to a reasonable degree.3

One such model was that the utilities are separable,
piecewise-linear and concave (SPLC) functions. Separa-
bility means that buyer i’s utility for a good j does not
depend on any other good, while a PLC function can
be used to approximate a concave function capturing
the utility of the i-th buyer for the j-th good.4 A spe-
cial case, when there is exactly one linear piece in each
utility is referred to as the linear model. While linear
markets succumbed to efficient algorithms due to the
existence of convex programming formulations for them
[20, 28, 24], for SPLC, it was shown in a remarkable
series of work [13, 9, 10] that efficient algorithms may
be impossible. Even though the case of linear utilities
turned out to be efficient and mathematically elegant,
it was noted that it is not the most relevant model in
practice. The reason being that at an equilibrium price,
a buyer could spend all its money on a small number
(even one) of goods, because its marginal utility remains
the same for these goods even after procuring them in
large quantities.

The last decade showed a renewed interest in algo-
rithmic study of market equilibria due to the boom in
e-commerce. With the advent of the Internet, new pos-
sibilities for markets emerged, such as with online ad-
vertising (Google, Bing) or online sales companies such
as Amazon. Importantly, the scale brought on to the
computational problems in these settings meant that ef-

1In fact these results were for a more general model where the
money is not fixed and each buyer comes with an endowment of

goods and the money is obtained by selling these goods. Such a

setting is referred to as the Arrow-Debreu setting.
2Unless explicitly stated, by an algorithm, we do not necessar-

ily mean an efficient (polynomial time) algorithm; just a proce-

dure which terminates in finite time.
3Note that the way we have defined the problem we have

already assumed that the utility of buyer i depends only on the

bundle of goods allocated to it and not on the allocation to others.
4Concavity of the utility function models the law of diminish-

ing marginal returns.

ficiency and practicality would be key in evaluating an
algorithm. Among the new market models introduced,
the ones relevant to this paper are the spending con-
straint model [37] and the perfect, price-discrimination
model [23]. In the spending constraint model, the utili-
ties are SPLC and the buyer can spend at most a pre-
scribed budget on each segment. Due to the utilities
being SPLC, this model goes beyond the limitations im-
posed by linear markets and, unlike the SPLC case, it
has a polynomial time algorithm [18]. Further, as ar-
gued in [37], it captures the popular AdWords market
to a high degree. In the perfect, price-discrimination
model, apart from buyers and sellers, there is a middle-
man who buys goods from the sellers according to the
prices set by them and sells them to the buyers at prices
they are willing and able to pay. The buyers still have
SPLC utilities similar to the SPLC model. This model is
aimed at capturing online display-ad marketplaces and,
for this, a polynomial time algorithm to compute an
equilibrium was given by [23].

1.2 A plethora of algorithms As is the case with
many fundamental problems that are practically rele-
vant, for instance matching, linear programming and
graph partitioning, a large variety of algorithms to com-
pute market equilibria have been developed for several
market settings, each with its own virtues: While algo-
rithms based on local dynamics [40, 14, 11, 12, 41] do not
need any central authority for computing an equilibrium
and also help us in understanding how the market might
reach an equilibrium, combinatorial, flow-based algo-
rithms [17, 18, 23, 30, 39, 38] reveal structural insights
based on interesting market mechanisms; see Chapter 5
in [36] for an extensive survey. Complementary-pivoting
algorithms or Simplex-like algorithms [19, 2, 22], on the
other hand, are natural choices for several reasons; they
are conceptually simpler, much easier to implement and
run very fast in practice in spite of possible worst case
exponential bounds. The situation here can also be
compared to that for linear programming where, in spite
of provably efficient algorithms and known exponential
worst-case bounds for natural pivoting rules [21], the
method of choice in practice has been Simplex-like piv-
oting algorithms.5

However, the problem of whether there are
polynomial-time, Simplex-like algorithms for tractable
market models, even for linear markets, has remained
elusive. In fact, a peculiar feature of market equilib-
rium problems is that, even though there are no LP
formulations known for them, there are strongly poly-

5Theoretical results such as smoothed analysis of the Simplex
algorithm [34] strongly justify this practice in hindsight.



nomial time algorithms [30, 39] in many settings, and
the solution to the convex programs for them can be
proved to be rational if the input is rational; a rarity in
the world of convex programming. By an optimist, this
could be taken as evidence that there may even be LP
formulations for market equilibria settings and, hence,
Simplex-like algorithms for these problems and, indeed,
we consider this as an important open problem.

1.3 Our contribution We make significant progress
towards the goal of finding Simplex-like, polynomial-
time algorithms for market equilibria by providing (con-
ditional) polynomial-time algorithms and unconditional
FPTASs for the spending constraint and the perfect,
price-discrimination models, both of which include lin-
ear markets in the Fisher model as a special case. We
describe this informally in the following theorem.

Theorem 1.1. (Polynomial Simplex-like algos)
Assuming the positive resolution of an algebraic prob-
lem of Cucker, Koiran and Smale (see Problem 2),
there are Simplex-like polynomial-time (in n, m, and
the bit length required to encode the input) algorithms
to compute the market equilibrium exactly in the
spending constraint and perfect, price-discrimination
Fisher market models. The algorithms are Simplex-like
in the sense that they pivot on the 1-skeleton of a
sequence of polyhedrons and that there is a potential
function for each polytope, which is monotone on the
traced path. The total number of pivots is polynomial
in the input size.

Unconditionally, our algorithms can be proved to
be FPTASs which compute strongly-approximate market
equilibria in the sense that, given ε > 0, they compute
prices and allocations such that each buyer derives at
least a 1

1+ε -fraction of the utility at a true market
equilibrium. They run in time polynomial in the input
size and 1/ε.

We develop one set of techniques that works for
both the models. We start with convex programming
formulations, of [7] for the spending constraint model
and, of [23] for the perfect, price-discrimination model.
Subsequently, from the KKT conditions for these pro-
grams, we derive the first linear complementarity prob-
lem (LCP)-like formulations. To an LCP-like formula-
tion, one can associate a natural polyhedron by drop-
ping the quadratic complementarity conditions. It can
be shown that a solution of this LCP-like formulation
occurs at a vertex of this polyhedron. One strategy then
is to start at an arbitrary vertex of this polyhedron and
pivot until an optimal vertex is reached. This Lemke
[26] or Lemke-Howson [27] type approach has been at-
tempted in the past by [19, 2] for linear markets but it

is far from clear how to obtain a polynomial guarantee
for these algorithms.

Our algorithm departs from previous approaches
(for linear markets). Starting with an instance I of
the market model at hand, our algorithm carefully
constructs a sequence of instances I0, . . . , It = I such
that 1) I l and I l+1 differ in the utility of exactly one
segment for all l, and 2) given an optimal solution to
the LCP corresponding to I l, the algorithm obtains
the optimal solution to I l+1 in a finite number of
pivots. The way the sequence is constructed, an optimal
solution of I l violates exactly one complementarity
condition for the instance I l+1. Thus, the solution of I l

sits on the 1-skeleton of the polyhedron corresponding
to I l+1. What about polynomial number of pivots?
The main technical result of the paper is to show
that if all the segments in the utilities for all buyers
are of the form Uijk = (1 + 1/q)nijk for q ∈ Z+

then, employing a scaling technique, a polynomial-sized
sequence of instances can be created such that the
pivoting algorithm takes a polynomial number of steps
on each. The question then is how to find a starting
point. This can be done if we start with an instance
where all utilities are set to the (same) value, which
is the maximum of utilities over all segments. Overall
the number of pivots and the number of polyhedrons
turn out to be polynomial assuming all utilities are
integer powers of the same α = 1 + 1/q. The original
utilities may not have such a form, but they can be
approximated to a degree of accuracy which is enough
to recover the exact market equilibrium. However, if
we approximate the utility Uijk ∼ αnijk , the precision
in this approximation that we require to compute the
exact market equilibrium forces us to pick q and nijk’s
which can require polynomial number of bits to write
down. Thus, each pivoting step in our algorithm, which
requires to determine which hyperplane will become
tight first, can be shown, in our case, to reduce to the
following problem.

Problem 2. Given α = 1 + 1/q with q ∈ Z>0, positive
integers n1, . . . , nl, and σi ∈ {−1, 1}, the problem
is to check the sign of the expression

∑l
i=1 σiα

ni in
polynomial time, i.e., in time poly(l, log q, log nmax),
where nmax

def= maxi ni.

Hence, our algorithm will be truly polynomial time if
there is a polynomial time procedure to above prob-
lem. In fact, Cucker, Koiran and Smale [15] gave an
algorithm for this problem when α is integer in their
attempt to find integer roots of a lacunary polynomi-
als. This problem appears as an open problem in their
paper.



To obtain unconditional results, due to our current
inability to solve Problem 2, we approximate the input
utilities as powers of 1+ε/s, where ε > 0 is the parameter
in the FPTAS and s is the total number of segments in
the instance. While the problem of determining signs
and, hence pivoting, becomes easy, we still need to
prove that an equilibrium for these approximate utilities
is ε-strongly approximate. This requires us to do a
sensitivity analysis of the corresponding LCP which
seems daunting. We bypass this and, interestingly, use
our basic algorithm as a proof technique to establish
the claim about the utilities: The utilities derived by
the buyers from the allocation and prices produced by
our algorithm is not less than a 1

1+ε multiplicative factor
of that each derives from a true market equilibrium.

Summarizing, we present the first Simplex-like al-
gorithms which pivot polynomially many times for mar-
ket models important in e-commerce settings. In fact,
these are the first such results for any market model.
Moreover, initial experiments suggest that these algo-
rithms run very fast in practice on randomly generated
instances. Conceptually, our framework to convert a
convex program into an LCP and then come up with
a Simplex-like algorithm that moves on a sequence of
connected polyhedra may be of independent interest
and should find more applications. Finally, our algo-
rithm moves in the utility space and is an instantiation
of the homotopy method which has been deployed in
other powerful polynomial-time algorithms such as that
for computing the permanent of a non-negative matrix
[25]. Besides helping us prove a polynomial bound on
the number of pivots, moving in utility space could be
useful in other scenarios. Firstly, in practical situations,
the utilities are the most conjectural of all data. Hence,
such an algorithm may shed some light on how the buy-
ers discover their utilities gradually. Secondly, it has
been shown in [1] that buyers may actually benefit by
reporting false utilities. Whence, a game-theoretic anal-
ysis would benefit from an algorithm which works in
the utility space. Our algorithm may also be useful in
a repeated market setting where buyers are indifferent
among the goods to start with (may be the market is
new and the buyers are not sure about the relative worth
of the goods), and they learn their utilities gradually as
they consume.

2.1 Organization of the paper In Section 2.2 we
present an overview of how our results are obtained.
It starts with defining the spending constraint model
in Section 2.2.1 and deriving an LCP-like formulation
for it in Section 2.2.2. The algorithm description and
the main theorem regarding them appear in Section
2.2.3. The claims about the running time are presented

in Section 2.2.4. A detailed overview of the proofs
corresponding to Section 2.2.3 are presented in Section
4. A precise description of the algorithms appear in
Figures 2.1 and 2.2. The perfect, price-discrimination
model, its LCP-like formulation and the modifications
required to make the algorithms and the proof are is
described in Section 3. We present related work in
Section 5. Section A shows how, systematically, we
can convert convex program to LCP-like formulation for
spending constraint model. In a similar way, we can get
LCP-like formulation for perfect, price-discrimination
model from its convex program. For the formal proof of
the polynomial bound, the results about our algorithms
being FPTASs unconditionally, details on how to obtain
a starting solution and degeneracy, we refer the reader
to the full version.

2.2 Overview of the algorithm and results In
this section we present in detail the main technical ideas
behind the algorithm mentioned in Theorem 1.1. As
noted, when all the utilities in the spending constraint
market or the perfect, price-discrimination are linear
then both the settings reduce to linear markets. Hence,
we will not present a separate algorithm and proof
for this case. Further, to illustrate the key ideas,
in this section, we focus on the spending constraint
market. Towards the end we highlight what needs to be
done additionally for the perfect, price-discrimination
market. This section is organized as follows: First we
start with a brief description of Fisher markets, market
equilibrium conditions and show how to augment this
model with spending constraints. Then, we present a
characterization of market equilibrium in these markets
and, based on this characterization, we derive an LCP-
like formulation to capture market equilibria exactly.
Subsequently, we describe the basic pivoting algorithm
(see Figure 2.1) whose input consists of an optimal
solution with respect to a set of utilities and a utility
which has been reduced. This algorithm outputs an
optimal solution for the new utilities. Then we present
the scaling algorithm (see Figure 2.2) which combines
the basic algorithm with a scaling technique and speeds
it up. Finally, we present the main theorems regarding
the algorithms. Our hope is that this section should
be able to convey the key ideas in sufficient detail to
convince the reader of their importance and correctness
of our techniques. The full version of the paper contains
all the details.

2.2.1 The spending constraint model Recall that
in the Fisher market model there is a set G of divisible
goods and a set B of buyers with n

def= |G| and
m

def= |B|. Each buyer i ∈ B has money Mi which is



fixed. Its utility from a bundle of goods is defined by
a non-negative, non-decreasing, concave function Ui :
Rn+ → R+. At given prices, each buyer buys a utility
maximizing (optimal) bundle, subject to the money
constraint. A price vector is said to be market clearing
if, after each buyer is given an optimal bundle, there is
no deficiency or surplus of any good, and the money of
all the buyers is exhausted, i.e., the market clears. The
problem is to find such market clearing or equilibrium
prices when they exist. Without loss of generality
(w.l.o.g.) we assume that the quantity of every good
is one. We will be concerned with utilities which are
separable, i.e., for buyer i, its utility for good j only
depends on the amount of good j it has been allocated.
In the case when these utilities are linear, buyer i derives
utility at a constant rate Uij from good j up to any
amount. Its total utility from a bundle x = (x1, . . . , xn)
of goods is

∑
j∈G Uijxj , a linear function. At prices

p = (p1, . . . , pn), where pj is the price of good j, buyer i
buys a (optimal) bundle x that maximizes

∑
j∈G Uijxj

subject to
∑
j∈G xjpj ≤ Mi and xj ≥ 0,∀j ∈ G. It

is known (and intuitively clear) that buyer i will buy
only those goods for which Uij/pj, the utility from a unit
amount of money, is maximized. Uij/pj is referred to as
the bang-per-buck for (i, j).

In the spending constraint model, the utilities are
a generalization of linear; separable, piecewise-linear
and concave (SPLC). For a buyer i and good j, the
utility function is piecewise-linear concave with sij
linear segments; on segment 1 ≤ k ≤ sij buyer i
derives utility at a constant rate Uijk. The key difference
between the SPLC model and the spending constraint
model is that, here, one is also given as input, a budget
Bijk : buyer i is allowed to spend at most Bijk money
on the k-th segment corresponding to good j. Here
Bijk’s are strictly positive and concavity implies that
Uijk > Uij(k+1) for 1 ≤ k < sij . If xijk is a variable
that denotes the amount of good j allocated to buyer i
for segment k, then Uijkxijk is the corresponding utility
derived from this segment and the budget constraint
implies that xijkpj ≤ Bijk for a fixed price vector
p = (p1, . . . , pn). Therefore, at prices p, the budget-
constrained, utility-maximization goal of buyer i is
captured by the following optimization problem. A
solution to this program is called its optimal bundle.
We will assume, w.l.o.g., that all Uijk, Bijk > 0 and
Mi > 0.

maximize
∑
j∈G Uijkxijk∑

j∈G,1≤k≤sij
xijkpj ≤Mi

∀j ∈ G, ∀1 ≤ k ≤ sij : xijk ≥ 0, xijkpj ≤ Bijk
(2.1)

2.2.2 Deriving an LCP formulation for the
spending constraint model From the Karush-Kuhn-
Tucker (KKT) conditions applied to the linear pro-
gram (2.1), we can derive the following characterization
of an optimal bundle for buyer i: Sort the segments
(i, j, k),∀j, k by decreasing order of their bang-per-buck
(Uijk/pj), and partition them into P1, P2, . . . such that
each partition contains all segments with the same bang-
per-buck and the bang-per-buck of Pi > Pi+1. Hence,
at prices p, the segments in Pl make i strictly happier
than those in Pl+1, Pl+2, . . .. Therefore, a strategy for
it to maximize its utility is to start buying partitions in
increasing order, until all its money (Mi) is exhausted.
Suppose it exhausts all its money at t-th partition. We
refer to all partitions before Pt as forced (as they are
bought fully), Pt is called flexible (as it be bought par-
tially), and all the subsequent are referred to as unde-
sired (as they can not be bought at all).

Let qijk denote the quantity of money spent by
buyer i on the k-th segment for good j, i.e. qijk =
xijkpj , and let λi denote the inverse of the bang-per-
buck of the flexible partition Pt for buyer i. Note that
λi will be strictly positive assuming that prices are
non-zero. The reason for using inverse is to get linear
constraints, and will be clear shortly. First, for buyer
i, we rewrite the conditions for forced, flexible and
undesired partitions formally in-terms of λi. ∀(j, k) :

if Uijk

pj
> 1

λi
then qijk = Bijk (Forced)

else if Uijk

pj
= 1

λi
then 0 ≤ qijk ≤ Bijk (Flexible)

else Uijk

pj
< 1

λi
then qijk = 0 (Undesired)

Clearly, at prices p, the above conditions are satisfied by
an optimal bundle for buyer i. However, our goal is to
capture (get sufficient conditions for) equilibrium prices.
To capture the Boolean-like conditions above, we use
the expressive power of LCPs. Now pj-s will no longer
be fixed and will act as variables. Hence, λi(> 0) will
also be an indeterminate and we would like it to act as
inverse bang-per-buck of the flexible partition for buyer
i. qijk’s remain as money allocation variables. Note that
the left hand side predicate in the above conditions can
be linearized and re-written as sgn(Uijkλi − pj); where
“+” denotes forced, “0” flexible and “−” undesired.
To capture this through a single linear constraint, we
eliminate the ”+” case by introducing slack variables
γijk which act as price supplements for forced segments
so that their bang-per-buck can be equated to 1/λi.
Formally, the linear constraints we impose are: ∀(i, j, k)
0 ≤ qijk ≤ Bijk and Uijkλi − pj − γijk ≤ 0. Having
done this the above three conditions can be rewritten
as: ∀(i, j, k), γijk > 0 ⇒ qijk = Bijk (forced), and



Uijkλi − pj − γijk < 0⇒ qijk = 0 (undesired). Putting
all these together, we get an LCP-like formulation given
in Table 1, call it LCP 1.
As an example of how to use these complementarity
conditions to derive the Boolean conditions above, note
that if γijk > 0 then qijk = Bijk. Since Bijk > 0 by
assumption, qijk > 0. This implies that Uijkλi − pj −
γijk = 0 which implies that Uijk/pj > 1/λi.

Conditions (2.5) and (2.6) of LCP 1 are included to
enforce market clearing. The non-negativity for pj ’s is
implied by (2.5) and non-negativity of qijk’s. Conditions
(2.2), (2.3) and (2.4) of LCP 1 have two parts. We refer
to the left part by a and the right part by b. For example
constraint λi ≥ 0 is (2.2.a) and qijk ≥ 0, γijk ≥ 0
by (2.2.b). Every inequality except (2.2.a) participates
in some complementarity condition of (2.4). From the
way we derived LCP 1, it is self-evident that a market
equilibrium will satisfy it. The next theorem shows that
the conditions of LCP 1 are also sufficient and they
capture all the market equilibria.

Theorem 2.1. (LCP characterization for SC)
Any p, q, γ, λ’s that satisfy (2.2), (2.3), (2.4), (2.5) and
(2.6) can be used to produce a market equilibrium for
the corresponding spending constraint model.

Finally, even though this may seem a specific way
to derive an LCP-like formulation for the spending
constraint model, such formulations can be derived in a
systematic manner from convex programs such as that
of [32, 7] and may be of independent interest, see Section
A. Concretely, this technique allows us to derive an
LCP for the perfect, price-discrimination market using
a convex program of [23].

2.2.3 A Simplex-like algorithm We start by notic-
ing that in the LCP in Table 1, the constraints (2.2),
(2.3), (2.5) and (2.6) are linear and while the set of
constraints (2.4) are quadratic (complementarity). It
is not immediately clear how to solve LCP 1 efficiently
through a Simplex-like method due to its quadratic con-
straints. One possibility is to apply Lemke’s scheme on
LCP 1. However it is not guaranteed to converge and,
even if it does, there does not seem to be a way to prove
a bound on number of pivoting steps. Given their gen-
erality, complementary-pivoting algorithms are unlikely
to be polynomial in general. However, can we exploit
the structure of our problem to get polynomial algo-
rithms? A step towards this appears in the works of
[19, 2] which apply Lemke-type frameworks on an LCP
for linear Fisher markets and show that it converges in
finite time. However, even ignoring the fact that their
algorithm makes sense only for linear markets, there
seems to be little hope of proving a polynomial bound

on the number of pivots.
We now present our algorithm for the spend-

ing constraint model. The algorithms formally ap-
pear in Figures 2.1 and 2.2. Our algorithm de-
parts from previous approaches (for linear markets)
that try to pivot on one polyhedron. Instead, start-
ing with an instance (U,B,M) of the spending con-
straint model, we carefully construct a sequence of in-
stances (U0, B,M), . . . , (U t, B,M) = (U,B,M) such
that, roughly, the following properties hold. (Here U
and B respectively are short for the utilities Uijk’s and
budget restrictions Bijk’s of the segments, and M for
the money Mi’s of buyers.)

1. Dropping the complementarity constraints from the
LCP 1 for (U l, B,M), we obtain a polyhedron P l

which contains P l−1 and for which we are given a
very good starting point Sl−1.

2. We give a complementary-pivoting scheme which,
starting from Sl−1 is able to obtain the optimal
solution to the LCP 1 for (U l, B,M). This solution
serves as the starting point for the next round and
is denoted Sl.

3. (U0, B,M) are chosen such that we can produce
the optimal solution S0 easily.

4. Crucially, we prove that the number of pivots done
on each polyhedron, and the number of polyhe-
drons in the sequence, are both (small growing)
polynomials in the bits needed to describe the input
(U,B,M).

The picture in Figure 1 is a graphic illustration of
this algorithm. Hence, unlike other polynomial time
algorithms, the algorithm is simple both conceptually
and from the point of view of implementation. The
difficulty is moved to proof of correctness. Now we
describe the steps and the intuition behind them in more
details.

Let P (U,B,M) be the polyhedron in the (λ, p, q, γ)-
space defined by the linear constraints (2.2), (2.3), (2.5)
and (2.6), while the quadratic constraints of (2.4) are
dropped.

Theorem 2.1 implies that it is sufficient to find a
point in P (U,B,M) which satisfies the complementarity
conditions of (2.4); call such a point a solution of
P (U,B,M). Wishfully thinking, suppose we could
choose U. Then the simplest choice would be to set
all the Uijk’s to the same value and then a solution is
recovered by setting all prices to be the same6, from

6This is under the assumption that ∀j ∈ G,
P

i,k Bijk ≥P
i Mi/n. Refer to full version for the general case.



∀(i, j, k) : λi ≥ 0 and qijk ≥ 0, γijk ≥ 0(2.2)
∀(i, j, k) : qijk ≤ Bijk and Uijkλi − pj − γijk ≤ 0(2.3)
∀(i, j, k) : γijk(qijk −Bijk) = 0 and qijk(Uijkλi − pj − γijk) = 0(2.4)
∀j ∈ G :

∑
i,k qijk = pj(2.5)

∀i ∈ B :
∑
j,k qijk = Mi(2.6)

Table 1: LCP 1 - An LCP-like formulation for the spending constraint Fisher market Model

which a feasible allocation can be computed. Now
observe that if we change Uijk for exactly one (i, j, k),
then exactly one inequality of P (U,B,M) is modified,
namely Uijkλi− pj −γijk ≤ 0. Moreover, if we decrease
Uijk, then the polyhedron expands, containing all the
previous feasible points. Let the solution of P (U,B,M)
be S and let the new utility for (i, j, k) be denoted
by U ′ijk. Note that if qijk is zero at S, then S still
remains a solution of P (U ′, B,M) where U ′ is the same
as U except at (i, j, k) where it is U ′ijk. However, if
qijk > 0, then S violates the complementary constraint
qijk(U ′ijkλi − pj − γijk) = 0 in P (U ′, B,M).

Assume that P (U,B,M) and P (U ′, B,M) are non-
degenerate for the simplicity of ensuing arguments.
At this point let us discuss some properties of a
non-degenerate polyhedron, which are relevant to our
complementary-pivoting algorithm. Consider a polyhe-
dron P in an r-dimensional space, represented by a set of
inequalities. It is called non-degenerate if at any point of
this polyhedron the set of tight inequalities are linearly
independent. In that case at a vertex (0-dimensional
facet) of P exactly r inequalities are tight, on an edge
(1-dimensional facet) r − 1 are tight, and in general on
i-dimensional facet r−i are tight. The set of i or less di-
mensional facets of P is called an i-skeleton of P . As an
edge of P is 1-dimensional, there are only two possible
directions to move on it.

Let the total number of segments among all the
utility functions be denoted by s. Hence, P (U,B,M) is
2s-dimensional as (2.5) and (2.6) imposes m+n linearly
independent equalities. Since, the complementarity
conditions of (2.4) require 2s inequalities to be tight
at S in P (U,B,M), it forms a vertex. Changing Uijk
to U ′ijk relaxes exactly one inequality at S, hence S sits
on an edge of P (U ′, B,M) and now there are exactly
two feasible directions to move. Recall that S violates
only qijk(U ′ijkλi − pj − γijk) = 0 and the goal is to
establish it. Among these two directions, there is an
obvious one, namely towards U ′ijkλi − pj − γijk = 0,
as we want to reestablish the violated complementarity
condition. The reason behind changing exactly one
Uijk is to ensure this uniqueness of the direction for

movement (unambiguity). If we decrease more than
one Uijk’s, then we end up on a higher dimensional facet
which may have an infinite number of possible directions
to move.

At the next vertex, say v, a new inequality, say
I, becomes tight. If it corresponds to the constraint
mentioned above (involving U ′ijk,) then we are done.
Otherwise, assuming it is not one of (2.2.a), it belongs
to some complementarity condition, say CI . Let I ′ be
the other part of the complementarity condition CI ,
i.e., CI is II ′ = 0. Since, CI was satisfied on the
edge we took into the vertex v, I ′ was already tight
on it. Therefore, at v, I and I ′ both are tight. For
all other complementarity conditions, exactly one of
the participating inequality is tight at v. Hence, in
order to maintain all of (2.4), except for the violated
constraint, we have only two choice - either relax I or
relax I ′. If we relax I then we go back on the previous
edge. Therefore, in order to move forward there is
no other choice than to relax I ′. Such a pivoting is
called complementary pivoting, where based on the
new tight inequality at the vertex, the other inequality
in its complementarity condition is relaxed in order
to maintain all the complementarity constraints. Our
algorithm traces a path by doing a complementary
pivoting at every intermediate vertex until the violated
constraint is satisfied. We will argue later that this path
does not cycle and terminates at a solution vertex S′ of
P (U ′, B,M).

A bit more formally, we start our algorithm with
utilities U0 where all U0

ijk’s are set to the maximum
value among the input Uijk’s. For this input we can
find a vertex of its polyhedron which is also an opti-
mal solution of (U0, B,M), say S0. At S0 all the prices
are set to the same value

P
i Mi/n. In that case all the

segments give the same bang-per-buck with respect to
U0 and, hence, we can set γijk’s to zero and λi’s ac-
cordingly. qijk’s can also be determined without much
effort. Such an S0 forms a vertex (though degenerate)
of P (U0, B,M). Now, the key is to reduce the U0

ijk’s
to their original value Uijk one at a time, while keeping
track of the optimal solutions.In this process, we con-



struct a sequence {U l}l≥0 and their solutions {Sl}l≥0

such that U0 ≥ U1 ≥ · · · ≥ UN = U , where U l and U l+1

differ only at a specific index (i, j, k) with U l+1
ijk < U lijk.

As a consequence, P (U l, B,M) ⊆ P (U l+1, B,M) and,
thus, Sl is feasible in P (U l+1, B,M). If qijk = 0 at Sl,
then Sl+1 remains the same as Sl. Otherwise we move
on the 1-skeleton of P (U l+1, B,M) using complemen-
tary pivoting as explained above to reach at Sl+1. Since
(B,M) is always the same in all the iterations, for sub-
sequent sections, we write the polyhedron P (U,B,M)
as P (U).

Our algorithm is Simplex-like as it moves on 1-
skeleton of an expanding polyhedron. In each iteration,
the algorithm follows a Simplex-like path. Further,
unlike all previous algorithms, our algorithm moves in
utility space, while B and M are fixed and market
clearing is enforced (2.5), (2.6). The advantages of these
features are discussed in the introduction.

2.2.4 Running time While it is clear that the num-
ber of different polyhedra the algorithm, described in
the previous section, will pivot on is finite, it is not
clear why the algorithm does not get stuck or cycle in
any iteration. The first main technical claim about our
algorithm is that, in an iteration corresponding to seg-
ment (i, j, k), λi monotonically increases, and pj and
qijk monotonically decrease on the path followed by the
algorithm, starting from Sl in P (U l+1). Further, one
of these three increase/decrease is strict in every piv-
oting step. This implies that during this iteration the
algorithm can not cycle and no vertex is visited twice.
Finally, one has to argue that our algorithm will never
venture on an infinite ray and, hence, terminates at Sl+1

in finitely many steps. Thus, apart from being Simplex-
like our algorithm has a stronger property that it has
monotone pivoting. We capture this in the following
theorem.

Theorem 2.2. (Finite Bound) For every l ≥ 0, the
path traced by our algorithm starting from Sl in P (U l+1)
ends at a solution vertex Sl+1 in a finite number of
pivots.

This gives us the first finite-time complementary-
pivoting algorithm for the spending constraint model.
Next, we show how to achieve the polynomial bound on
the number of pivots in each iteration by extending our
algorithm using a scaling based technique. Concretely,
the next claim is that when the input utilities are of
the form Uijk = αnijk for the same α > 1, and nijk’s
are positive integers, the number of pivots needed to go
from Sl to Sl+1 (as in the theorem above) are polyno-
mial.

Theorem 2.3. (Polynomial Bound) Suppose U is
such that Uijk = αnijk where α > 1, and nijk’s are
positive integers. Let U ′ be same as U except for one
(i, j, k) where U ′ijk = αnijk−1, and let S and S′ be the
solution vertices of P (U) and P (U ′). The number of
pivots our algorithm performs starting at S and ending
at S′ is at most 4(m+ n).

Using the above theorem, we immediately obtain a
bound, on the total number of pivotings done by
our algorithm across all polyhedra, of poly(N,m, n, s),
where N

def= maxi,j,k nijk. However, this will not be
sufficient. This is because in the case when the utilities
are not powers of α, we will need to approximate
them to a very high degree of accuracy and then nijk
can be exponential in the bit-lengths involved in the
description of the input U. The next idea is to reduce
the dependency from N to logN. Note that Theorem
2.3 says something stronger: If the utility we are
changing within a factor of α, then the number of pivots
needed is independent of α or nijk. We leverage this by
combining our basic algorithm (see Figure 2.1) with a
scaling technique to get a scaling algorithm (see Figure
2.2) whose dependence on N is logN instead of N in
this bound above. Roughly, the idea is to divide the
algorithm into phases, each taking poly(m,n, s) many
pivots, and to fix l-th most significant bit of nijk’s in
l-th phase.

Finally we wish to apply this scaling algorithm on
the traditional utilities, where all Uijk’s are integers. To
do this first we approximate each Uijk by U ′ijk = αnijk

for a rational α > 0 and integers nijk’s such that the
configuration of forced, flexible and undesired segments
at the solutions of both P (U) and P (U ′) are same. We
show that such an approximation can be obtained where
the size of α and nijk’s are bounded by polynomial
in the bits needed to represent the input (U,B,M).
We also note that it is easy to obtain the equilibrium
solution given its forced, flexible and undesired segments
configuration.

To end, we note that though the sizes of α and
nijk’s can be shown to be polynomially bounded in-
dividually, if we want to store U ′ explicitly we need
exponential sized space, which makes every pivoting ex-
ponential time. To avoid this we need to store α and
nijk’s carefully. We can represent the coordinates of
the vertices through polynomials in α. Further, while
moving from one vertex to another, we can even rep-
resent the direction vector through polynomials. As in
the traditional Simplex or any pivoting algorithm, the
problem that remains is to find the new tight inequality
at the next vertex. This problem reduces to calculating
the sign of a polynomial in α with poly(m,n, s) terms



and exponential degree, in polynomial time. Formally
we need to solve Problem 2 in polynomial time, in or-
der to bound the time for each pivoting of the scaling
algorithm. Hence, given a polynomial time algorithm
for this problem, along with the fact that the number
of pivots needed overall is a polynomial, we obtain a
polynomial time Simplex-like algorithm for the spend-
ing constraint model in the Fisher setting. To show that
our scaling algorithm is in fact a FPTAS, first, we only
approximate the input utilities up to an accuracy of
(1 + ε/s), where s is the total number of segments in the
instance. Now all the numbers involved are small and
sign testing can be done in polynomial time. However,
we have to compare the utilities derived by the buyers,
from the prices and allocations produced by the scaling
algorithm on the approximate utilities. It can be shown
that these utilities are at least a 1/1+ε fraction of the
ones at the true market equilibrium. The proof is not
straightforward and relies on the monotonicity claims of
the basic algorithm. This concludes an overview of the
algorithm and the steps in the proof of the polynomial
bound required for the spending constraint model as in
Theorem 1.1. The same can be shown for the perfect,
price-discrimination market model.

3 Perfect, Price-Discrimination Model

In this section we formally define the perfect, price-
discrimination market model introduced in [23] and
present its LCP-like formulation. First consider the
Fisher market model with separable, piecewise-linear
concave utilities (SPLC): The utility functions of buyers
are separable across goods, for every buyer i and good
j the utility function is piecewise-linear concave with
sij segments and on segment 1 ≤ k ≤ sij buyer i
derives utility at a constant rate Uijk. Further, for every
segment there is a constraint Aijk that bounds the
maximum quantity of the good that can be allocated
to segment (i, j, k). Note that this is different than
the spending constraint model where the maximum
allocation on every segment is restricted by the budget
and not by the quantity of good.

In the perfect, price-discrimination model we as-
sume the buyers have SPLC utilities. Buyer i decides
a rate ri at which it wants to derive utility per unit of
money it spends. Note that in the Fisher model with
SPLC utilities, for a good j, buyer i derives utility at
different rates since the price he pays in every segment
of j is the same. In contrast, in the perfect, price-
discrimination model, the rate is the same not only in
every segment of a good, but also across goods. Addi-
tionally, there is a middle-man who buys all the goods
from sellers at the price they set and sells the goods to
the buyers charging according to the utility they derive.

However, for any set of prices pj , the middle-man never
sells any good at a loss. This implies that if ri < Uijk/pj

for a segment (i, j, k), then middle-man profits by sell-
ing this segment to buyer i. Similarly, if ri = Uijk/pj,
the middle-man is indifferent in between selling and not
selling and if ri > Uijk/pj, then the middle-man does
not sell the segment. Therefore, if a buyer keeps its
rate very high, it may not get any good and its budget
is unused. As usual, the goal of every buyer is to maxi-
mize its utility subject to its budget constraint. Hence,
the optimal rate of a buyer is the maximum rate at
which it can spend its entire budget. Let MaxUi(ri)
be the maximum utility buyer i can receive at rate
ri, i.e., MaxUi(ri) = {

∑
j,k UijkAijk | ri ≤ Uijk/pj}.

Buyer i needs to pay MaxUi(ri)/ri in order to buy all
these segments. From this, we get the optimal rate
r?i = maxri

{MaxUi(ri)/ri ≥ Mi} for buyer i; at any
rate ri > r?i , it would not able to spend its entire bud-
get and that might give it less utility. At r?i , buyer i’s
utility is r?iMi, and it is indifferent between any bundle
that gives it this much utility. At market equilibrium
prices, every buyer, based on its optimal rate, gets a
utility maximizing bundle and the market clears, i.e.,
all goods are sold to buyers and all of their money is
spent.

We derive an LCP-like formulation for this model
using the convex program by [23]. The input to
the market is (U,A,M), where (U,A) and M specify
the SPLC utility functions and money of the buyers
respectively. The variables are (pj , qijk, λi,γijk), where
the price of good j is pj , the amount of money spent by
buyer i on the k-th segment of good j is qijk, the inverse
of the rate of buyer i, i.e, 1/ri, is λi, and the extra price
charged by the middle-man in selling good j to buyer
i on k-th segment is γijk. The formulation is given in
Table 2.

Theorem 3.1. (LCP characterization for PPD)
Any p, q, γ, λ’s that satisfy the constraints in Table 2
can be used to produce a market equilibrium for the
corresponding perfect, price-discrimination model.

The basic algorithm in Figure 2.1 and scaling algorithm
in Figure 2.2 compute an equilibrium for the perfect,
price-discrimination model. There are minor differences
in the proof of the finiteness lemma, for which we refer
the reader to the full version.

4 Proof Overviews

4.1 The Finite Bound Theorem Now we present
the technique underlying the proof of Theorem 2.2 and
point out why such a theorem may not be true for the



Algorithm 2.1. (Basic Algorithm)
Input: Spending constraint: (U,B,M); Perfect price discrimination: (U,A,M)

/* I =
{

(B,M) for spending constraint
(A,M) for perfect, price-discrimination */

/* P (U, I) =
{

Polyhedron associated with LCP 1 for spending constraint
Polyhedron associated with LCP 2 for perfect, price-discrimination */

Umax ← maxi,j,k Uijk;
for each (i, j, k)⌊

U0
ijk ← Umax;

v ← solution vertex of P (U0, I);
return UpdateU(v, U0, I, U); (See below)

UpdateU(v, U c, I, Uf )
for each (i, j, k)

U cijk ← Ufijk;
H ← hyperplane U cijkλi − pj − γijk = 0;
if qijk > 0 at v then v ← vertex obtained by moving towards H from v in P (U c, I);

while qijk > 0 and U cijkλi − pj − γijk < 0 at v do⌊
v ← vertex obtained by complementary pivoting at v in P (U c, I); (See Section 2.2.3)

return v;

Algorithm 2.2. (Scaling Algorithm)
Input: Spending constraint: (U,B,M); Perfect price discrimination: (U,A,M)

/* I =
{

(B,M) for spending constraint
(A,M) for perfect, price-discrimination */

/* P (U, I) =
{

Polyhedron associated with LCP 1 for spending constraint
Polyhedron associated with LCP 2 for perfect, price-discrimination */

/* Every Uijk = αnijk , where α > 1, nijk ∈ Z+ */
nmax ← maxi,j,k nijk; N ← 2dlognmaxe

β ← αN ;
for each (i, j, k)⌊

U cijk ← β;
v ← solution vertex of P (U c, I);
while β > α do

β ←
√
β; Uf ← U c;

S ← {(i, j, k) | Uijk ≤ U cijk/β};
for each (i, j, k) ∈ S⌊

Ufijk ← U cijk/β;
v ← UpdateU(v, U c, I, Uf ); (See “Basic Algorithm” for UpdateU procedure)
U c ← Uf ;

return v;

SPLC case without the budget constraints.7 Also, it

7In fact, we can construct an example where if we apply this

pivoting on the LCP for the SPLC case, the algorithm can get
stuck.

will be helpful to understand the approach in order to
prove the Polynomial Bound Theorem.

Consider an iteration when the only utility that
changes is for the segment (a, b, c) which is decreased
from Uabc to U ′abc. Let U l and U l+1 be the corresponding



∀(i, j, k) : λi ≥ 0 and qijk ≥ 0, γijk ≥ 0(3.7)
∀(i, j, k) : qijk ≤ Aijk(pj + γijk) and Uijkλi − pj − γijk ≤ 0(3.8)
∀(i, j, k) : γijk(qijk −Aijk(pj + γijk)) = 0 and qijk(Uijkλi − pj − γijk) = 0(3.9)
∀j ∈ G :

∑
i,k qijk = pj +

∑
i,k Aijkγijk(3.10)

∀i ∈ B :
∑
j,k qijk = Mi(3.11)

∀j ∈ G : pj > 0

Table 2: LCP 2 - An LCP-like formulation for the perfect, price-discrimination market model.

before and after utilities, and let Sl be the solution
of P (U l). The only complementarity constraint that
may no longer be satisfied by Sl in P (U l+1) will be
(U l+1

abc λa − pb − γabc)qabc = 0. In case qabc = 0 at
Sl, then this complementarity condition is satisfied and
we can output Sl+1 = Sl. Thus, we may assume that
qabc > 0 at Sl. Hence, Sl lies on a 1-face of P (U l+1).
The algorithm now starts to move from Sl. In the first
step we have the choice to move in either direction until
we hit a vertex of P (U l+1). From then on we apply
complementary pivoting. The main idea is to show that
λa, pa, qabc change monotonically until Sl+1 is found.
Moreover at least one is strictly monotone on every
pivot step. Hence, no vertex can appear twice in the
path traced from Sl to Sl+1. The polyhedron, however,
can be unbounded but we can show that this is not
a problem: Even if we reach a vertex which has an
unbounded ray, we will never take it. Since the number
of vertices is finite, this will imply that we must find a
solution to P (U l+1) in a finite number of pivots.

We proceed to show how to prove monotonicity.
There are several cases and one has to deal with
degeneracy. We just show it for the first edge in the
path and that also only for one case. Further, we assume
non-degeneracy which needs to be handled separately.
The omitted part of the argument is tedious but similar
in flavor.

Given that we violate only the above mentioned
complementarity condition, whenever we reach a vertex
for which either qabc = 0 or U l+1

abc λa − pb − γabc = 0,
we have got Sl+1 by Theorem 2.1. We refer to these
two hyperplanes as H1 and H2 respectively. From
Sl, we will attempt to move so that we come closer
to H2. (In subsequent pivotings, we will not have a
choice, but a similar argument can be provided.) Let
e1 and −e1 be the two directions at the point Sl on
which we can move. We will pick the one for which
the inner product is positive w.r.t. the normal vector
to H2; hence, in this direction, we move closer to H2.
The inner product can be zero in which case it can be

shown that we have a degenerate configuration which
we have to handle separately. Assume this does not
happen. Let e1 be the direction such that we move
to Sl + δe1 for a small enough δ > 0 so that we are
still in P (U l+1). We will denote by λ, p, q, γ values at Sl

and by λ(δ), p(δ), q(δ), γ(δ) the values of the variables at
Sl+δe1. Eventually, we would like δ to increase until we
hit a vertex of P (U l+1). We call this path which starts
at Sl and ends for the first time a vertex of P (U l+1) is
hit as Π, the other end-point not included.

There are two cases to consider: γabc = 0 or γabc > 0
at Sl. Let us show the idea of the proof for the case
γabc = 0. In this case, at Sl, U l+1

abc λa−pb < 0, as qabc > 0.
The main claim is that on Π, λa(δ) is non-decreasing
while pa(δ) and qabc(δ) are non-increasing and at least
one of these changes strictly.

The proof is by contradiction. First note that along
the path Π, all variables are monotone. This is because
they are linear functions of δ and the increase/decrease
is determined by the sign of that co-ordinate in e1. Next,
we try to interpret this movement combinatorially.
Consider a bipartite graph between B and G with edges
only for those (i, j) 6= (a, b) such that there is a k
for which γijk = 0 and qijk > 0 at Sl. This graph
will not change on Π; it may change on the vertex
we hit. Suppose the components for this graph are
C1, . . . , Cl. Then, it is shown that for every 1 ≤ r ≤ l,
for all i ∈ B ∩ Cr and j ∈ G ∩ Cr, λi(δ)/λi = pj(δ)/pj

is a constant depending only on the component and
δ, for all δ on Π. Roughly, this happens because if
qijk > 0 and γijk = 0 at Sl, then first qijk(δ) > 0 and
γijk(δ) = 0, as on the interior of an edge inequalities will
not become tight from being non-tight and vice-versa.
Hence, from (3.b), U l+1

ijk λi(δ) = pj(δ). Let Ca and Cb
be the components that contain a and b respectively.
If Ca = Cb a degeneracy can be detected. Hence,
we will ignore this case for now. Another thing that
can happen is that Ca = {a}. In this case, because at
Sl, U l+1

abc λa − pb − γabc < 0, and a has no edge in the
graph, this means that increasing λa by a little bit will



bring us closer to H2 and vice-versa without violating
any other conditions. Hence, in this case λa is strictly
monotonically increasing along Π. Similarly if Cb = {b},
it can be argued that pb is strictly decreasing along Π.
In both cases we have proved what we set out to. The
case that remains is when Ca 6= Cb and neither is a
singleton.

In this case, if, on the contrary, λa(δ) de-
creases with δ, then λa(δ)/λa < 1, which implies that
pj(δ)/pj < 1 for all j ∈ Ca. This in turn implies that∑
j∈Ca

pj(δ) <
∑
j∈Ca

pj . Since money with the buyers
of Ca,

∑
i∈Ca

Mi, is fixed, and for any (i, j) such that
exactly one of them lies Ca, qijk = Bijk if qijk > 0 for
every k (else that edge would be in the graph), in or-
der to maintain their market clearing conditions, due
to the decrease in the prices of the goods in Ca, Ca
has to direct its money outwards. It follows from that
(2.6), qabc(δ) > qabc. This would imply that pb(δ) > pb.
Since λa(δ) < λa and pb(δ) > pb, the path Π is mov-
ing away from H2, contradicting our choice of move-
ment and proving monotonicity all along. In this case
λa(δ), pb(δ) qabc(δ) turn out to be strictly monotone.

Since the money of each component is fixed, it is
possible to argue that pj ’s and λi’s of all components
other than Ca and Cb remain unchanged. The SPLC
utilities are almost like spending constraint utilities
except that the segment lengths are based on amount
of good and not money- the constraint will look like
qijk ≤ Aijkpj where Aijk is the length of the segment.
Thus, changing pj will change qijk. This will cause
the components to now exchange money through edges
which are not present in the graph. This forces the
prices in other components to change. This in turn
breaks the monotonicity argument.

4.2 The Polynomial Bound Theorem Using the
ideas in the proof of Finite Bound Theorem, we now
sketch a proof of Theorem 2.3. In the proof of Theorem
2.2 we argued that in an iteration for segment (a, b, c),
λa monotonically increases and pb monotonically de-
creases. Moreover, for a buyer i 6= a, its λi increases by
the same multiplicative factor as λa when i ∈ Ca and it
decreases by the same multiplicative factor as pb when
i ∈ Cb and remains constant otherwise. Suppose, cur-
rently i ∈ Ca and let d def= λa/λi and d′

def= λa/pb. At the
next vertex suppose i leaves Ca and after some time it
again comes back, then clearly for the current values of
λ’s we can say that λa/λi > d. In other words, the ratio
λa/λi increases between the time when i leaves Ca and
joins back. Further, it can be shown that the ratio λa/pb

is increasing the fastest, so we get (λa/pb)/d′ > (λa/λi)/d.
Next, we note that whenever there is a path be-

tween buyers i and ĩ through segments (i′, j′, k′) such

that qi′j′k′ > 0 and γi′j′k′ = 0) (they are in the same
component) we can write λi/λĩ as product of utilities/
product of utilities using (2.3.a), by eliminating inter-
mediate variables. This is because γijk’s are zero for all
the segments forming the path. In case when Uijk’s are
of the form αnijk , expression for this ratio λi/λĩ evaluates
to αg where g is an integer (positive or negative).

Since U ′abc = Uabc/α and λa/pb = 1/Uabc at S, the ratio
λa/pb can increases at most by a multiplicative factor
α on the path from S to S′. Putting the above two
observations together, we can say that whenever buyer
i leaves Ca and again joins back, the ratio λa/λi should
have increased at least by a multiplicative factor α. In
other words λa/λi ≥ αd. This gives λa/pb > αd′ using
(λa/pb)/d′ > (λa/λi)/d, a contradiction. This implies
that once i leaves Ca it can not join it again. A similar
argument can be derived for Cb. Since, in every iteration
some i joins/leaves either Ca or Cb, the number of
pivotings between S and S′ is bounded by 4(m+ n).

5 Comparison with Related Work

As mentioned in the introduction, the problem of com-
puting market equilibria is an intensely studied prob-
lem. Rather than providing a comprehensive survey
of the literature, we choose to compare our techniques
with the ones we think are the most relevant. First
we would like to clarify that, although we use convex
programming techniques to derive our LCP-like formu-
lations, we do not employ any method to solve convex
programs. Our algorithm performs complementary piv-
oting on a sequence of carefully chosen polyhedra, where
the polyhedra are obtained from dropping complemen-
tarity conditions from the LCPs. First, note that while
LCP formulations were known for the SPLC model [22],
prior to this work, there were no known LCP-like for-
mulations for the spending constraint and the perfect,
price-discrimination models. Our algorithmic technique
is inspired by the algorithms of Lemke [26] and Lemke
and Howson [27]. Previous such attempts to obtain
complementary-pivoting or Simplex-like algorithms for
linear markets were made by [19, 2]. As outlined before,
while these algorithms pivoted on a single polyhedron,
ours employs a scaling based technique and pivots on
a sequence of connected polyhedra, each corresponding
to a different set of utilities. Moreover, while ours does
polynomially many pivots, no such bound is known for
the other two. Also, our algorithm works for more gen-
eral market models than linear.

Polynomial time algorithms for the spending con-
straint model and the perfect, price discrimination
model were known due to [18] and [23] respectively.
These algorithms built on the combinatorial tech-
niques of [17]. These algorithms are primal-dual, flow-



based and compute equilibrium by iteratively increasing
prices.

Strongly polynomial time algorithms are also
known, for instance for linear time markets [30] used the
scaling technique from [29] in a flow network. [39] con-
sidered a class of minimum-cost flow problems, where
the cost function is convex and separable and he gave
a strongly polynomial algorithm for these problems us-
ing a scaling based technique of [29]. As an application,
he obtained a strongly polynomial time algorithms for
the Fisher market model with spending constraint. In
another paper, [38] considered the concave generalized
flow problem, where the flow leaving an arc is an in-
creasing concave function of the flow entering it, and
he gave a polynomial time combinatorial algorithm for
these problems. Since the convex programming formu-
lation for perfect, price-discrimination model [23] can be
formulated as such a problem, one obtains a polynomial
time algorithm for this model.

There is also a large body of work on algorithms
for computing market equilibrium via local-dynamics.
Walras [40] was the first to consider such a dynamics in
1874, which he called tatonnement. Here the prices are
changed based on the excess demand and equilibrium is
attained when there is no excess demand. Later, it was
shown by [5, 3, 6, 35] that the continuous tatonnement
process converges locally for the markets satisfying weak
gross substitutability (WGS)8. Recently, [11, 12] gave a
discrete tatonnement process that converges to an ap-
proximate equilibrium for WGS markets. The running
time of our FPTAS, which computes an approximate
equilibrium for spending constraint and perfect, price-
discrimination markets, can be compared to the running
time of the result of [11]. While both these markets sat-
isfy WGS condition, however, it is unclear how to obtain
our FPTAS results from [11] as it is assumed in this pa-
per that the demand is a single valued function of the
prices which is not the case with these two markets.
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A LCPs from Convex Programs

In this section we show how to derive the LCP for
the spending constraint model. In a similar way, we
can obtain an LCP for the perfect, price-discrimination
model. Even though we present our method for these
two models, the pattern should be visible and useful
in coming up with LCP-like formulations for related
market models. The LCP formulation for the spending
constraint model is derived from the convex program of
[7]. Since linear Fisher markets arise as a special case
of the spending constraint model, the LCP for them
becomes simpler.

A.1 LCP formulation for Fisher markets with
spending constraints Recall that the input to the
spending constraint model is (U,B,M). Without loss
of generality (w.l.o.g.), we can assume that for every
good j, there is a segment (i, j, k) such that Uijk > 0,
otherwise no buyer is interested in buying this good and
we can safely discard this good and set pj = 0. Similarly,
we assume that Mi > 0 for every buyer i, otherwise
we can discard this buyer from the market. W.l.o.g.,
we also assume that the total quantity of every good
is unit, otherwise we can get an equivalent market by
scaling U appropriately. The following convex program
by [7] is a generalization of [32, 16] and they proved that
it captures the equilibrium prices and allocations for the
spending constraint model. The variables are qijk’s and
pj ’s, where qijk denotes the amount of money spent by
buyer i on segment (j, k) and pj denotes the price of
good j.

maximize
∑
i,j,k qijk logUijk −

∑
j pj log pj

∀i :
∑
j,k qijk = Mi(A.1)

∀j :
∑
i,k qijk = pj(A.2)

∀(i, j, k) : qijk ≥ 0(A.3)
∀(i, j, k) : qijk ≤ Bijk(A.4)



Theorem A.1. [7] An optimal solution of above convex
program corresponds to an equilibrium for a Fisher mar-
ket with spending constraints whose input is (U,B,M).

Next, we write the KKT conditions for the above pro-
gram, which are necessary conditions for the optimality
[8]. Let αi, βj , µijk, δijk be the Lagrangian (dual) vari-
ables corresponding to equations (A.1)-(A.4). An opti-
mal solution must satisfy the following KKT conditions:

∀(i, j, k) : logUijk = αi + βj − µijk + δijk(A.5)
∀j : 1 + log pj = βj(A.6)

∀(i, j, k) : qijkµijk = 0(A.7)
∀(i, j, k) : (qijk −Bijk)δijk = 0(A.8)
∀(i, j, k) : µijk ≥ 0, δijk ≥ 0(A.9)

We first show that at equilibrium, prices of all goods are
strictly positive.

Lemma A.1. At an optimal solution of above convex
program, pj > 0,∀j.

Proof. This proof is by contradiction. Suppose pj = 0
for some j at an optimal solution. Since the optimal so-
lution satisfies (A.1)-(A.9), we get that qijk = 0,∀(i, k)
(from (A.2)). This gives us δijk = 0,∀(i, k) (from (A.8)).
As per our assumption, there is a segment for good j,
such that Uijk > 0. For such a segment (i, j, k), putting
pj = 0 and δijk = 0 in (A.5)-(A.6), we get αi =∞.

From (A.1), there is at least one segment (i, j′, k′)
for buyer i, such that qij′k′ > 0. For this segment,
µij′k′ = 0 (from (A.7)) and pj′ > 0 (from (A.3)). We
get the contradiction by putting αi =∞ and µij′k′ = 0
in (A.5)-(A.6).

Hence, simplifying (A.5)-(A.6), we get

∀(i, j, k) : Uijk

pj
= e1+αi−µijk+δijk(A.10)

Replacing e−(1+αi) by λi, we get λi ≥ 0 and the above
equation becomes

∀(i, j, k) : Uijk

pj
= 1

λi
e−µijk+δijk(A.11)

Next, replacing pjeδijk by pj + γijk and using δijk ≥ 0,
we get γijk ≥ 0 and

∀(i, j, k) : Uijk

pj+γijk
= 1

λi
e−µijk(A.12)

Using (A.7), we get that (A.12) is equivalent to

∀(i, j, k) : Uijkλi − pj − γijk ≤ 0; qijk ≥ 0;(A.13)
qijk(Uijkλi − pj − γijk) = 0

Further, (A.8) is equivalent to

∀(i, j, k) : qijk ≤ Bijk; γijk ≥ 0;(A.14)
γijk(qijk −Bijk) = 0

∀j : pj > 0(A.15)

Note that we need (A.15), because we want γijk = 0 iff
δijk = 0, and that can be assumed due to Lemma A.1.
Finally, we get that (A.1)-(A.9) are equivalent to the
following LCP-like formulation.

∀(i, j, k) : Uijkλi − pj − γijk ≤ 0; qijk ≥ 0;
qijk(Uijkλi − pj − γijk) = 0

∀(i, j, k) : qijk ≤ Bijk; γijk ≥ 0;
γijk(qijk −Bijk) = 0

∀i :
∑
j,k qijk = Mi

∀j :
∑
i,k qijk = pj

∀i : λi ≥ 0

(A.16)

Note that we have not put (A.15) in (A.16), because it
is redundant as shown by the following lemma.

Lemma A.2. Every solution of (A.16) has pj > 0,∀j.

Proof. The proof is by contradiction. Suppose there
is a solution of (A.16) with pj = 0 for some j. It
implies that qijk = 0,∀(i, k) (from

∑
i,k qijk = pj) and

γijk = 0,∀(i, k) (from γijk(qijk − Bijk) = 0). Consider
a segment (i, j, k) for good j, such that Uijk > 0. This
implies that λi = 0 (from Uijkλi−pj−γijk ≤ 0). There
must exist some (i, j′, k′), such that qij′k′ > 0 (from∑
j,k qijk = Mi) and pj′ > 0 (from

∑
i,k qij′k = pj′),

which is a contradiction to qij′k′(Uij′k′λi−pj′−γij′k′) =
0.

We call the formulation (A.16) LCP-like and not
an LCP due to the following technicality: There are
equalities in our formulation and all inequalities do
not participate in the complementarity conditions. We
ignore this distinction. Next, we prove the main
theorem of this section, which is the same as Theorem
2.1.

Theorem A.2. (LCP characterization for SC)
The pj’s and qijk’s give respectively market equilibrium
prices and allocations for an instance of the spending
constraint model if and only if they are solutions of
(A.16).



Proof. Recall that (A.16) is equivalent to (A.1)-(A.9).
From Theorem A.1 and the fact that the above convex
program satisfies strong duality [8], we get that every
solution of (A.16) is a market equilibrium solution.

For the other direction, given a market equi-
librium solution pj ’s and qijk’s, we set 1/λi

def=
mini,j,k{Uijk/pj | qijk > 0}, ∀i. Further if qijk < Bijk,
then we set γijk = 0, otherwise γijk = Uijkλi −
pj , ∀(i, j, k). It is easy to check that these satisfy (A.16).


