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Abstract. We propose a new convex optimization formulation for the
Fisher market problem with linear utilities. Like the Eisenberg-Gale for-
mulation, the set of feasible points is a polyhedral convex set while the
cost function is non-linear; however, unlike that, the optimum is always
attained at a vertex of this polytope. The convex cost function depends
only on the initial endowments of the buyers. This formulation yields an
easy simplex-like pivoting algorithm which is provably strongly polyno-
mial for many special cases.

1 Introduction

Fisher and Arrow-Debreu market models are the two fundamental market mod-
els in mathematical economics. In this paper, we focus on the Fisher market
model with linear utilities. An instance of this model consists of a set of buy-
ers, a set of divisible goods, initial endowments, also referred to as the money
owned by the buyers, quantities of the goods and (linear) utility functions of
the buyers. The problem is to determine market equilibrium prices and alloca-
tion of the goods to buyers such that the market clears and the utility function
for each buyer is maximized. Towards this, Eisenberg and Gale [5,9] formulated
a remarkable convex optimization program whose optimal solution, more pre-
cisely, values of the primal and dual variables at an optimal solution, captures
equilibrium allocation and prices.

Recently, many algorithmic results [3,4,8,10] pertaining to the computation
of market equilibrium prices and allocation for the linear case of Fisher and
Arrow-Debreu market models have been obtained. In [3], Deng et al. gave a
strongly polynomial time algorithm for the Fisher market with either constant
number of goods or constant number of buyers. Building on the Eisenberg-Gale
program, Devanur et al. [4] developed a primal-dual type first polynomial time
algorithm to solve the Fisher market model. A polynomial time algorithm for
the more general Arrow-Debreu market is also presented in [8]. More recently, a
strongly polynomial time algorithm for the Fisher market was given by Orlin [10].
A tantalizing open question is to formulate a linear program that captures the
Fisher solution. A positive resolution of this question would, of course, imply a



simplex-like algorithm for computing the same. This paper is an attempt towards
this objective.

In this paper, we propose a novel convex optimization formulation for the
Fisher market problem. In the standard Eisenberg-Gale formulation [5,9], the
set of feasible points is a convex polytope which merely models the packing
constraints and is oblivious to the parameters of the problem. Like the Eisenberg-
Gale formulation, the set of feasible points in our formulation is also a convex
polytope. However, unlike that, our convex polytope is defined in terms of the
input parameters and is rich enough so as to ensure that the optimum is always
attained at a vertex of this polytope. Furthermore, the convex cost function in
our formulation depends only on the initial endowments of the buyers. There
is another convex optimization formulation obtained by Shmyrev [11], however
this formulation also does not guarantee the optimum to be at a vertex.

The polytope in our formulation has special vertices and every such vertex
corresponds to the Fisher solution with a different endowment. We give a com-
binatorial characterization of special vertices and show that starting from any
special vertex, there is a simplex-like path of special vertices where the cost func-
tion monotonically increases and it ends at a vertex corresponding to the Fisher
solution. There may be many such paths of special vertices in the polytope. The
price update rule and the events that may occur, while finding the adjacent spe-
cial vertex, are similar to the ones in the DPSV algorithm [4]. Using a simple
pivoting rule, we give an algorithm, which traces one such path and show that
this algorithm is strongly polynomial for many special cases. Two interesting
cases are:

– Either the number of buyers or the goods is fixed.
– All the non-zero utilities are of the type αk, where α > 0 and 0 ≤ k ≤ M

(M is bounded by a polynomial in the number of buyers and goods).

This algorithm is conceptually simple, much easier to implement and runs
very fast in practice. In fact, the algorithm also gives the polyhedral interpreta-
tion to the basic algorithm in [4]. Further, we extend the Fisher market model,
where buyers have to pay the transportation cost as well [7]. There seems no
way to modify Eisenberg-Gale or Shmyrev formulations to capture the equilib-
rium solution for this extended model. However, an easy extension of the new
convex program captures the equilibrium solution for this model. Independently,
Chakrabarty et al. [2] also give a similar formulation for this model along with
an algorithm to compute ε-approximate equilibrium prices and allocations. How-
ever, the Fisher market with transportation cost may have irrational solutions,
so the optimum solution may not be at a vertex.

Organization. The rest of the paper is organized as follows. In Section 2, we
give a precise formulation of the Fisher market problem and introduce the new
convex optimization program and analyze it. In Section 3, we discuss the simplex-
like algorithm. In Section 4, we show that the algorithm is provably strongly
polynomial for many special cases. In Section 5, we summarize the number of



pivoting steps taken by the algorithm on random instances of the Fisher market.
Finally we conclude in Section 6.

2 New Convex Optimization Formulation

We begin with a precise description of the Fisher market model.

2.1 Problem Formulation

The input to the Fisher market problem is a set of buyers B, a set of goods G,
a utility matrix U = [uij ]i∈B,j∈G , a quantity vector q = (qj)j∈G and a money
vector m = (mi)i∈B, where uij is the utility derived by buyer i from a unit
amount of good j, qj is the quantity of good j, and mi is the money possessed
by buyer i. Let |B| = m and |G| = n. We assume that for every good j, there is
a buyer i such that uij > 0 and for every buyer i, there is a good j such that
uij > 0, otherwise we may discard those goods and buyers from the market.

The problem is to compute equilibrium prices p = [pj ]j∈G and allocations
X = [xij ]i∈B,j∈G such that they satisfy the following two constraints:

– Market Clearing: There is neither deficiency nor surplus of any good and
the money of all the buyers is exhausted, i.e., ∀j ∈ G,

∑
i∈B xij = qj and

∀i ∈ B,
∑
j∈G pjxij = mi.

– Optimal Goods: Every buyer buys only those goods, which give her the
maximum utility per unit of money, i.e., if xij > 0 then uij

pj
= maxk∈G uik

pk
.

Note that, by scaling uij ’s appropriately, we may assume that qj ’s are unit.

2.2 Convex Program

In this section, we introduce the new convex optimization program whose optimal
solution captures a solution to the Fisher market problem. Our convex program
is described in Table 1. We refer to the ambient space as the y-p-z-space.

Note that the feasible set O is a convex polytope in y-p-z-space and the cost
function is independent of the variables zij . We denote by Oaux the auxiliary
polytope in the y-p-space defined by the constraints 1 to 4 and refer to the
related convex program (with the same cost function) as the auxiliary convex
program.

Claim. Pr(O) = Oaux, where Pr(O) is the projection of O onto the y-p-space.

Proof. Clearly, Pr(O) ⊆ Oaux, and for Oaux ⊆ Pr(O), Z = [zij ] should be
constructed for a given (y,p) ∈ Oaux. One way to do this is by constructing a
max-flow network, where there is an edge from the source to every good j ∈ G
with capacity pj and from every buyer i ∈ B to the sink with capacity mi.
Further, there is an edge from every good j ∈ G to every buyer i ∈ B with ∞
capacity. Clearly, the max-flow gives the required zij ’s. ut



maximize
X
i∈B

mi log yi

subject to
∀i ∈ B, ∀j ∈ G : uijyi ≤ pj (1)X

j∈G

pj ≤
X
i∈B

mi (2)

∀i ∈ B : yi ≥ 0 (3)

∀j ∈ G : pj ≥ 0 (4)

∀i ∈ B :
X
j∈G

zij ≤ mi (5)

∀j ∈ G :
X
i∈B

zij = pj (6)

∀i ∈ B, ∀j ∈ G : zij ≥ 0 (7)

Table 1. New Convex Program

Therefore, in order to understand the optimality conditions, we may as well
work with the KKT conditions for the auxiliary convex program. Let xij , q, µi, λj
be the Lagrangian (dual) variables corresponding to the equations (1-4). An
optimal solution must satisfy the KKT conditions in Table 2.

∀i ∈ B : mi
yi

=
X
j∈G

uijxij − µi (8)

∀i ∈ B, ∀j ∈ G : (uijyi − pj)xij = 0 (9)

∀j ∈ G : −
X
i∈B

xij − λj + q = 0 (10)

(
X
j∈G

pj −
X
i∈B

mi)q = 0 (11)

∀i ∈ B, ∀j ∈ G : xij , λj , µi, q ≥ 0 (12)

∀j ∈ G : −pjλj = 0 (13)

∀i ∈ B : −yiµi = 0 (14)

Table 2. KKT conditions

Claim. At any optimum, µi = 0, ∀i ∈ B and λj = 0, ∀j ∈ G.

Proof. µi 6= 0 ⇒ yi = 0 ⇒ the optimal solution has cost −∞. However, we
may easily construct a feasible point in the polytope, where the cost is some real
value, therefore all µi’s are zero. Similarly, λj 6= 0⇒ pj = 0⇒ yi = 0, for some
i ∈ B. Hence, all λj ’s are zero. ut

Putting µi = 0 and λj = 0 in the KKT conditions (8-12), we get,

∀i ∈ B : mi =
∑
j∈G

uijxijyi (15)

∀i ∈ B,∀j ∈ G : (uijyi − pj)xij = 0 (16)



∀j ∈ G :
∑
i∈B

xij = q (17)

: (
∑
j∈G

pj −
∑
i∈B

mi)q = 0 (18)

∀i ∈ B,∀j ∈ G : xij , q ≥ 0 (19)

From (15-18),
∑
i∈B

mi =
∑
i∈B

∑
j∈G

pjxij =
∑
j∈G

∑
i∈B

pjxij =
∑
j∈G

pjq ⇒ q = 1

Proposition 1. Let (y,p) ∈ Oaux be an optimal solution to the auxiliary convex
program. Then p is a market equilibrium price.

Proof. As q = 1, interpreting X = [xij ] as an allocation, we see that conditions
(15-17) imply that the market clearing constraint holds at the price vector p.
Further, using condition 2, we have xij > 0⇒ yiuij = pj . As (y,p) ∈ Oaux, we
also have, ∀i ∈ B,∀j ∈ G : uijyi ≤ pj . Putting these two together, it is easily
verified that the optimal goods constraint is also satisfied. ut

Proposition 2.

(i) The auxiliary convex program admits a unique optimal solution.
(ii) Equilibrium prices are unique and allocations form a polyhedral set.

Proof. Part (i) follows from the fact that the cost function is strictly concave,
and part (ii) follows from the KKT conditions. ut

Let (y,p) ∈ Oaux be the unique optimum solution to the auxiliary convex
program. Let X = {X = [xij ]i∈B,j∈G | (y,p, X) satisfies (8-14)}. Note that X is a
convex set. As argued in the proof of Proposition 1, we may think of X ∈ X as an
equilibrium allocation and p as the equilibrium price. Now, we define Z = [zij ]
w.r.t. X ∈ X as zij = xijpj , ∀i ∈ B,∀j ∈ G. In other words, zij is the money
spent by buyer i on good j at the equilibrium allocation X. We refer to Z as
an equilibrium money allocation. It easily follows that (y,p, Z) is an optimum
solution to the main convex program. Note that there is an Xa ∈ X such that the
bipartite graph G = (B,G, E), where E = {(i, j) ∈ B × G | xij > 0}, is acyclic.
Let Za be the equilibrium money allocation w.r.t. Xa. The next proposition
asserts that (y,p, Za) is in fact a vertex of O.

Proposition 3. The point (y,p, Za) is a vertex of O.

Proof. There are mn+m+n variables in the convex program, and we show that
there are mn + m + n linearly independent constraints are tight at (y,p, Za)
(details are in Appendix A).

Remark 4. The auxiliary program itself captures the equilibrium prices at the
optimal solution, though not necessarily at one of its vertices. [6] has the detailed
analysis of both the polytopes.



3 A Simplex-like Algorithm

We begin with some notation. Henceforth, we denote the input to the Fisher
market problem by (U,m). The set of buyers and the set of goods are implicit.
We use gj and bi to denote the good j and buyer i respectively. For convenience,
we assume that all uij > 0.

Now, we turn our attention to the polytope O defined in the previous sec-
tion. We have shown that there exists a vertex v = (y,p, Z) of the polytope O
which captures the equilibrium prices and an equilibrium money allocation. An
important property of v is that ∀i ∈ B, ∀j ∈ G, zij(uijyi − pj) = 0. In other
words, for a buyer, non-zero money allocation is possible only on her optimal
goods.

Definition 5. A vertex v = (y,p, Z) of O is called special if zij(uijyi − pj) =
0, ∀i ∈ B, ∀j ∈ G.

It is easy to see that if v = (y,p, Z) is a special vertex, then it corresponds
to a solution for an instance of the Fisher market problem. Namely, let B′ =
{i ∈ B | yi 6= 0},G′ = G and U ′ be U restricted to B′ × G′. Further, for i ∈ B′,
let m′

i =
∑
j∈G zij . Clearly, v corresponds to a solution of (U ′,m′).

3.1 Characterization of Special Vertices

Let v = (y,p, Z) be a special vertex of O. W.l.o.g., we may assume that all yi’s
and all pj ’s are non-zero at v, because if pj = 0 for some j ∈ G at v, then v is
a trivial point, i.e., all coordinates are zero, and if yk = 0 for some k ∈ B at v,
then there is an adjacent vertex v′ = (y′,p′, Z ′) to v, where p′ = p, Z ′ = Z,
y′i = yi, ∀i 6= k, and y′k = minj∈G

pj

uij
.

Now we describe a combinatorial characterization of v. Towards this, we
define E(v) and F (v) as follows:

E(v) = {(i, j) ∈ B × G | uijyi = pj} and F (v) = {(i, j) ∈ B × G | zij > 0}

The elements in E(v) are called tight edges and the elements in F (v) are
called non-zero edges. By definition, F (v) ⊆ E(v). Let G(E(v), F (v)) be the
graph, whose vertices are the connected components C1, C2, . . . of the bipartite
graph (B,G, F (v)), and there is an edge between Ci and Cj in G(E(v), F (v)), if
there is at least one edge in E(v)−F (v) between the corresponding components
of (B,G, F (v)).

We say that buyer i belongs to a vertex C of G(E(v), F (v)), if buyer i lies in
the corresponding component of (B,G, F (v)). We call a connected component of
G as simply a component of G.

Definition 6. W.r.t. v = (y,p, Z),

– surplus of buyer i is defined to be the non-negative value mi −
∑
j∈G zij.

– a buyer is called a zero surplus buyer if its surplus is zero, otherwise it is
called a positive surplus buyer.



– a component of (B,G, F (v)) is called saturated if all buyers in that compo-
nent are zero surplus buyers, otherwise it is called unsaturated.

– a vertex of G(E(v), F (v)) is called saturated if the corresponding component
of (B,G, F (v)) is saturated, otherwise it is called unsaturated.

Theorem 7. v has following properties:

– Every component of (B,G, F (v)) contains at most one positive surplus buyer.
– Every component of G(E(v), F (v)) has at least one saturated vertex.

Proof. If a component of (B,G, F (v)) contains more than one positive surplus
buyers, then the zij ’s in that component may be modified such that the same set
of inequalities are tight before and after the modification, i.e., v is not a vertex.

Similarly, if a component of G(E(v), F (v)) does not have any saturated ver-
tex, then the pj ’s in that component may be scaled uniformly such that the
same set of inequalities are tight before and after the scaling, which leads to a
contradiction. ut

Corollary 8. If (U,m) are algebraically independent, then

– the bipartite graph (B,G, E(v)) is a forest. Hence there is at most one edge
in E(v)− F (v) between any two components of (B,G, F (v)).

– every component of G(E(v), F (v)) has exactly one saturated vertex.

Lemma 9. Let v be a special vertex of O. Then

(i) (B,G, F (v)) is acyclic.
(ii) If (U,m) are algebraically independent, then (B,G, E(v)) is acyclic and the

number of positive surplus buyers is |E(v)− F (v)|.

Proof. Since v is a vertex of O, therefore (B,G, F (v)) is acyclic. Part (ii) follows
from Theorem 7 and Corollary 8. ut

3.2 Algorithm

In general, a simplex-like pivoting algorithm moves from a vertex to an adjacent
vertex such that the cost function increases. Therefore, in order to design such
an algorithm for the main convex program, we first describe the AdjacentVertex
procedure.

We assume that (U,m) are algebraically independent?. The AdjacentVertex
procedure, given in Table 3, takes a special vertex v and outputs another special
vertex v′ adjacent to v, such that the cost function increases. If v is optimum,
then it outputs v′ = v. Otherwise, there is a component C of G(E(v), F (v))
containing an unsaturated vertex. Clearly C is a tree and there is exactly one
saturated vertex, say Cs, in C (Corollary 8). We consider C as the rooted tree
with root Cs. We pick an edge e between Cs and an unsaturated vertex, say Cu,
in C. Let (bi, gj) be the edge in E(v)− F (v) corresponding to e. There are two
cases depending upon bi belongs to Cs (Case 1) or Cu (Case 2).
? For the general (U,m), AdjacentVertex may be easily modified (Appendix B).



AdjacentVertex(v)
v′ ← v;
if v is optimum then

return v′;
endif
C ← component of G(E(v), F (v)) containing an unsaturated vertex;
Cs ← saturated vertex in C;
Cu ← unsaturated vertex, adjacent to Cs, in C;
e← edge between Cs and Cu;
(bi, gj)← edge in E(v)− F (v) corresponding to e;
if (bi, gj) is from Cs to Cu then
v′ ← adjacent vertex obtained by relaxing uijyi ≤ pj ;

else v′ ← adjacent vertex obtained by relaxing zij ≥ 0;
endif
return v′;

Table 3. AdjacentVertex Procedure

Case 1: We get a new vertex v′, adjacent to v in O, by relaxing the inequality
uijyi ≤ pj , which is tight at v. Let Tu be the subtree of C rooted at Cu and
Ju be the set of goods in the components of (B,G, F (v)) corresponding to the
vertices of Tu. v′ may also be obtained by increasing the prices of the goods in
Ju uniformly and by modifying yi’s and zij ’s accordingly till a new inequality
becomes tight. Table 4 lists the three possible cases for the new inequality.

1. A non-zero edge (bk, gl) becomes zero, i.e., zkl ≥ 0 becomes tight.
2. A non-tight edge (bk, gl) becomes tight, i.e., uklyk ≤ pl becomes tight.
3. An unsaturated vertex in C becomes saturated, i.e.,

P
l∈G zkl ≤ mk becomes tight,

where buyer k is a positive surplus buyer w.r.t. v.

Table 4. Different cases for the new tight inequality

Case 2: We get a new vertex v′, adjacent to v in O, by relaxing the inequality
zij ≥ 0, which is tight at v. Let J be the set of goods in the components of
(B,G, F (v)) corresponding to the vertices of C. v′ may also be obtained by
increasing the prices of the goods in J uniformly and by modifying the yi’s
and zij ’s accordingly till a new inequality becomes tight. Table 4 lists the three
possible cases for the new inequality.

Both the cases result in the new vertex v′ adjacent to v in O, where p as
well as y increase monotonically and

∑
j∈G pj as well as

∑
i∈B yi increase strictly

going from v to v′. Hence the cost function value increases strictly going from v
to v′. Note that v′ is also a special vertex of O.

From the above discussion, the following lemma is straightforward.

Lemma 10. If a special vertex v is not optimum, then there exists an adjacent
special vertex v′ such that the value of cost function is more at v′ than v.

There may be many simplex-like paths in O to reach at the optimum vertex
using different pivoting rules. Algorithm 1 traces a particular simplex-like path in



O, where the pivoting rule is such that there is at most one buyer with a positive
surplus at every vertex on the path. In this algorithm, we do not consider the
components, which contain only a single buyer.

U ′ ← 〈u11, . . . , u1n〉; m′ ← 〈m1〉;
v ← special vertex corresponds to the solution of (U ′,m′);
i← 2;
while i ≤ m do

/* Note that the inequality yi ≥ 0 is tight at v */
v ← vertex adjacent to v obtained by relaxing yi ≥ 0;
while surplus of buyer i w.r.t. v is non-zero do

v ← AdjacentVertex(v);
endwhile
i← i+ 1;

endwhile

Algorithm 1. A Simplex-like Pivoting Algorithm

There are two types of iterations of the inner while loop, one in which we relax
the inequality zkl ≥ 0 (Type 1) and the other in which we relax the inequality
uklyk ≤ pl (Type 2) for some (bk, gl).

Remark 11. Algorithm 1 seems similar to the sequential run of the basic algo-
rithm in [4].

Lemma 12. Algorithm 1 takes at most (m+ n ∗ 2m+n) iterations.

Proof. Consider the iterations of Type 2 of the inner while loop, where we relax
the tight inequality uklyk ≤ pl for some (bk, gl). Let Cjs be the component con-
taining buyer k in the jth such iteration. Note that Cjs is a saturated component.
Let Bj be the set of buyers and Gj be the set of goods in Cjs , and Sj = Bj ∪Gj .
Since prices monotonically increase, therefore all Sj ’s are distinct. The total
number of distinct Sj ’s are clearly bounded by 2m+n, and in every n iterations
of inner while loop, one iteration has to be of Type 2, therefore the number of
iterations of the algorithm is bounded by (m+ n ∗ 2m+n). ut

Remark 13. A more refined bound is 2m+n+1.

4 Analysis

In this section, we describe the main idea of Algorithm 1 and show that it is
strongly polynomial for many special cases.

Main Idea of Algorithm 1. Consider the inner while loop for buyer i and
let v be the current special vertex. The component C of G(E(v), F (v)) contain-
ing buyer i has exactly two vertices, one saturated (Cs) and one unsaturated
(Cu), and an edge (bk, gl) between them. Note that buyer i belongs to Cu and



zkl = 0. Now, consider the tree T in (B,G, E(v)) rooted at buyer i. The edges
are directed downwards, i.e., away from the root. We want to increase the prices
of the goods uniformly in T in order to decrease the surplus of buyer i. This will
increase the flow on the edges, which are from a buyer to a good (forward edges)
and decrease the flow on the edges, which are from a good to a buyer (backward
edges).

Therefore, when (bk, gl) be such that gl ∈ Cu and bk ∈ Cs, we need to relax
uklyk ≤ pl, and when gl ∈ Cs and bk ∈ Cu, we need to relax zkl ≥ 0 in order to
increase the prices. It is also clear that during the price increase, only backward
edges may be deleted. Moreover, since the prices of the goods in T increase,
buyers in T may become interested in the goods outside T , and it implies that
only forward edges may be added.

Theorem 14. Algorithm 1 is strongly polynomial when either the number of
buyers or goods is constant.

Proof. W.l.o.g., we assume that (U,m) are algebraically independent?.
It is enough to show that the inner while loop takes a strongly polynomial

number of iterations for every buyer i. Let Cj be the component ofG(E(v), F (v)),
which contains buyer i in the jth iteration of the inner while loop for buyer i.
If surplus of buyer i is not zero, then Cj contains exactly one saturated vertex,
say Cjs , and one unsaturated vertex, say Cju. Note that buyer i belongs to Cju.

Let (bk, gl) be the edge between Cju and Cjs , and Pj be the path starting from
buyer i and ending with the edge (bk, gl) in (B,G, E(v)).

Claim. All Pj ’s are distinct.

Proof. Recall that when the edge (bk, gl) is such that buyer k belongs to Cjs , we
relax the inequality uklyk ≤ pl, and when buyer k belongs to Cju, we relax the
inequality zkl ≥ 0. In other words, we add the edge (bk, gl) when buyer k belongs
to Cju and delete it when buyer k belongs to Cjs .

We show that all Pj ’s, which end in a good, are distinct, and a similar ar-
gument may be worked out for the case when they end in a buyer. A path Pj
may repeat only when the last edge, say e, is deleted and added again, and this
is possible only if some other edge more near to buyer i than e in Pj is deleted.
The induction on the length of Pj proves the claim, because the edges between
buyer i and the goods may not break (buyer i always lies in Cju). ut

Since the length of any Pj is at most 2 ∗min(m,n), therefore it is a constant
when either m or n is constant. Hence the total number of distinct Pj ’s are
bounded by a polynomial in either m (if n is constant) or n (if m is constant).
Hence the length of the simplex-like path in the Algorithm 1 is strongly polyno-
mial when either the number of buyers or goods is constant. ut

Theorem 15. Algorithm 1 is strongly polynomial when ∀i ∈ B, ∀j ∈ G, uij =
αkij , where 0 ≤ kij ≤ poly(m,n) and α > 0.

? For the general (U,m), a similar proof may be worked out.



Proof. We only need to show that for every buyer i, the inner while loop takes a
strongly polynomial number of iterations. Consider the iterations of inner while
loop for a buyer a. We monitor the values of ya

pb
,∀b ∈ G. Note that ya

pb
for a

good b remains same until both buyer a and good b are in the same component,
otherwise it strictly increases. Let Cj be the component of G(E(v), F (v)), which
contains buyer a in the jth iteration. If surplus of buyer a is not zero, then Cj

contains exactly one saturated vertex, say Cjs , and one unsaturated vertex, say
Cju. Note that buyer a belongs to Cju.

Let (bk, gl) be the edge between Cju and Cjs . There are two types of iterations,
one in which we relax the inequality zkl ≥ 0 (Type 1) and the other in which we
relax the inequality uklyk ≤ pl (Type 2).

Let zkl ≥ 0 is relaxed in the jth iteration, and ba, gj1 , bi1 , . . . , gjk , bk, gl be
the path from ba to gl in Cj . Clearly, ya

pl
= ui1j1 ...ukjk

uaj1 ...uik−1jk
ukl

(using the tight

inequalities uijyi ≤ pj), and the value of ya

pl
strictly increases when iteration

of Type 1 occurs. Now, we consider the values of logα
ya

pj
, ∀j ∈ G. Clearly,

these values monotonically increase when an iteration of Type 1 occurs. Since
for every j ∈ G, the value of logα

ya

pj
might be at most n ∗ poly(m,n), therefore

for every buyer i, the number of iterations of inner while loop is bounded by
n2 ∗ poly(m,n). ut

Theorem 15 may be easily generalized to handle the case when some uij ’s
are zero. Many easy cases like all utilities are 0/1, non-zero utilities form a tree
etc. may also be easily shown to be strongly polynomial in Algorithm 1.

Remark 16. The hypothesis of Theorem 15 seems sufficient to handle most prac-
tical situations. This is because, firstly, in practice, utilities are hardly exactly
known, and secondly, as shown in [1] buyers have every reason to strategize and
report fictitious utilities.

5 Experimental Results

In this section, we report the experimental results of Algorithm 1. We ran Al-
gorithm 1 on random instances of the Fisher market (i.e., (U,m) are generated
randomly), while keeping the number of buyers and goods same (i.e., m = n).
For each value of m ∈ {4, 8, 12, 16, 20}, we ran 100 experiments. Table 5 summa-
rizes the results in terms of the minimum (best), maximum (worst) and mean
(average) number of pivoting steps taken by Algorithm 1.

# buyers/goods 4 8 12 16 20

min 6 31 84 136 245

max 24 80 168 235 320

mean 12.5 50.9 113.1 186.9 279.8

Table 5. Number of Pivoting Steps Taken by Algorithm 1



Clearly, the number of steps seems to increase quadratically with the size of
instances, and even the worst case instance for each value of m requires fewer
steps than 2m2. Therefore, it seems possible to prove a much better bound for
Algorithm 1.

6 Conclusion

We have presented a novel convex optimization formulation for the Fisher market
problem whose feasible set is a polytope and it is guaranteed that there is a vertex
of this polytope which is an optimal solution. Exploiting this, we have developed
a simplex-like vertex-marching algorithm which runs in strongly polynomial time
for many special cases.

We feel that, the strongly polynomial algorithm by Orlin [10] is neither poly-
tope based nor that intuitive. The algorithms, which are polytope based and
simplex-like are generally very easy to understand, simpler to implement us-
ing standard math libraries, and run faster in practice. Therefore, an obvious
open problem is to give a strongly polynomial, simplex-like algorithm; even a
polynomial bound will be interesting. Another open problem is to give a linear
programming formulation that captures the equilibrium prices for the Fisher
market. Therefore, it will be interesting to construct a linear cost function on
our polytope so that optimum vertex gives the equilibrium prices.
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A Proofs

Proof of Proposition 3

Let [zij ] = Za and G = (B,G, E), where E = {(i, j) ∈ B × G | zij > 0}, and
k = |E|. There are mn+m+ n variables in the convex program, therefore at a
vertex of O, mn + m + n linearly independent (l.i.) constraints must be tight.
At (y,p, Za), k constraints of type (1) (i.e., uijyi ≤ pj), m constraints of type
(5), n constraints of type (6) and mn− k constraints of type (7) are tight.

The mn − k constraints of type (7) are l.i., and we eliminate all the zij ’s,
which are zero, from the constraints of types (5) and (6). Now, there are k
constraints of type (1), m constraints of type (5), and n constraints of type (6),
which are tight. We only need to show that they are l.i.. Table 6 describes all the
tight constraints. There are m+n+k columns, where last k columns correspond
to the k non-zero zij ’s. We show that these columns are l.i., i.e., there is no
linear relation among them.

If there were a linear relation among these columns, then clearly it has to
contain some columns of yi’s, some columns of pj ’s and some columns of zij ’s.
Let the column yk be there in the relation and αk be its coefficient. Now, consider
the connected component C of G, which contains buyer k. To kill the coordinates
of yk, the columns corresponding to all the buyers (yi’s), and goods (pj ’s) in C
have to be present in the relation and their coefficients are positive multiple of
αk. These positive multiples are some fraction of the product of utilities. This
results in a vector u, which has zero coordinates in R1 (shown in Table 6).

y1 y2 · · · ym p1 p2 · · · pn zi1j1 zi2j2 · · · zikjk

R1

8>><>>:
u11 -1
u12 -1

u21 -1
...

...

R2

8<:
-1 1 · · ·

-1 1 · · ·
...

...

R3

8<:
1 · · ·

1 · · ·
...

Table 6. Tight Inequalities

Now, to kill the coordinates of R2 in u, we get l linear equations in the
coefficients αe of ze’s (e ∈ C), where l is the number of goods in C. Each αe



appears exactly once in one of the linear equation. The sum of all these linear
equations is

∑
e∈C αe = c.αk, where c is a positive constant. Any solution of

these l equations will kill the coordinates of R2 in u.
Now, to kill the coordinates of R3 in u, we get r linear equations in the

coefficients αe of ze’s (e ∈ C), where r is the number of buyers in C. Each αe
appears exactly once in one of the linear equation. Clearly the sum of these r
linear equations has to be 0, i.e.,

∑
e∈C αe = 0. However, we had

∑
e∈C αe =

c.αk, which imply αk = 0, and hence the contradiction. ut

B AdjacentVertex Procedure for General (U, m)

AdjacentVertex(v)
v′ ← v;
if v is optimum then

return v′;
endif
C ← component of G(E(v), F (v)) containing an unsaturated vertex;
L← set of tight inequalities at v;
B′ ← set of buyers in the component of (B,G, E(v)) corresponding to C;
G′ ← set of goods in the component of (B,G, E(v)) corresponding to C;
F ′(v) = {(bi, gj) ∈ F (v) | i ∈ B′, j ∈ G′};
E ← {(bi, gj) ∈ E(v) | bi and gj are in different components of (B′,G′, F ′(v))};
/* rank(L): maximal number of linearly independent inequalities in L. */
while rank(L) = mn+m+ n and E 6= ∅ do
G← (B′,G′, F ′(v));
(bi, gj)← an edge in E between Cs and Cu of G;
if (bi, gj) is from Cs to Cu then

Relax the inequality uijyi ≤ pj , which is tight at v;
L← L− {uijyi ≤ pj};

else Relax the inequality zij ≥ 0, which is tight at v;
L← L− {zij ≥ 0};
/* Cs and Cu are merged into a new unsaturated component. */
F ′(v)← F ′(v) + (bi, gj);

endif
E ← E − (bi, gj);

endwhile
/* Now we are on an edge of O */
v′ ← vertex adjacent to v on this edge in O;
return v′;

Table 7. AdjacentVertex Procedure
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